Please wait a minute...
金属学报  2016, Vol. 52 Issue (8): 945-955    DOI: 10.11900/0412.1961.2015.00635
  论文 本期目录 | 过刊浏览 |
304奥氏体不锈钢超低温轧制变形诱发马氏体转变的定量分析及组织表征*
史金涛(),侯陇刚,左锦荣,卢林,崔华,张济山
北京科技大学新金属材料国家重点实验室, 北京 100083
QUANTITATIVE ANALYSIS OF THE MARTENSITE TRANSFORMATION AND MICROSTRUCTURE CHARACTERIZATION DURING CRYOGENIC ROLLING OF A 304 AUSTENITIC STAINLESS STEEL
Jintao SHI(),Longgang HOU,Jinrong ZUO,Lin LU,Hua CUI,Jishan ZHANG
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

史金涛,侯陇刚,左锦荣,卢林,崔华,张济山. 304奥氏体不锈钢超低温轧制变形诱发马氏体转变的定量分析及组织表征*[J]. 金属学报, 2016, 52(8): 945-955.
Jintao SHI, Longgang HOU, Jinrong ZUO, Lin LU, Hua CUI, Jishan ZHANG. QUANTITATIVE ANALYSIS OF THE MARTENSITE TRANSFORMATION AND MICROSTRUCTURE CHARACTERIZATION DURING CRYOGENIC ROLLING OF A 304 AUSTENITIC STAINLESS STEEL[J]. Acta Metall Sin, 2016, 52(8): 945-955.

全文: PDF(2492 KB)   HTML
  
摘要: 

研究了304亚稳态奥氏体不锈钢在超低温和室温轧制变形过程中的宏、微观组织演变, 变形引起的马氏体转变及其对合金性能的影响. 结果表明, 超低温轧制比室温轧制能更有效地加速马氏体转变, 其中20%超低温轧制变形便可实现50%室温轧制变形下的马氏体转变量, 且超低温轧制变形最终可实现完全的马氏体转变. 同时, 超低温轧制引起的马氏体转变在板厚方向上较均匀, 显著优于室温轧制板材的板厚方向均匀性, 有助于提高亚稳态奥氏体不锈钢板厚方向性能的均匀性. 分析认为, 亚稳态奥氏体不锈钢在超低温和室温轧制过程中具有不同的变形机理, 前者主要以马氏体转变及其变形为主, 后者以奥氏体变形为主. 超低温轧制所获板材的硬度比室温轧制板材增长迅速, 但随变形量增大位错密度差距缩小, 最终导致两者硬度趋于一致. TEM表征结果表明, 超低温和室温轧制过程中引起的马氏体与母相基体间的取向关系遵循K-S (Kurduumov-Sachs)关系.

关键词 奥氏体不锈钢超低温轧制马氏体转变X射线衍射微观组织    
Abstract

Advanced material processing techniques have been successfully used to produce metals or alloys with submicro- or nano-sized grain structures with some possibly required harsh working environment that limits their industrial application. Cryogenic deformation might promote extensively severe deformation or distortion of metals or alloys (such as Al or aluminium alloys, Cu or copper alloys, Ti, Zr, etc.) so as to accumulate higher deformation energy (e.g., higher defect density) for the depression of the (dynamic) recovery, which will contribute to the microstructure refinement. Presently, the macro-/micro-structural evolution, the martensitic transformation as well as its effect on the mechanical property during the cryogenic and room temperature rolling of 304 metastable austenitic stainless steel were studied. It shows that the cryogenic rolling can effectively accelerate the martensitic transformation, e.g., after 20% cryogenic rolling the volume fraction of the transformed martensitic is equal to that after 50% room temperature rolling, and finally the cryogenic rolling can promote the complete martensitic transformation. Also the through-thickness uniformity of the martensitic transformation after cryogenic rolling is significantly better than that of the room temperature rolled one, which can help to improve the through-thickness performance uniformity. It is found that the deformation mechanisms are different for cryogenic and room temperature rolling metastable austenitic stainless steel: the martensitic transformation and its deformation occur in the former while austenitic deformation in the latter. The cryogenic rolling can quickly induce higher hardness than that of the room temperature rolled one, and the hardness tends to be equal finally because of the minimized dislocation density difference between these two rolled steels. TEM results indicate that the orientation relationship between the transformed martensite and the old austenite in the cryogenic and room temperature rolled sheets can still keep the K-S (Kurduumov-Sachs) relationship.

Key wordsaustenitic stainless steel    cryogenic rolling    martensite transformation    XRD    microstructure
收稿日期: 2015-12-09     
基金资助:* 国家自然科学基金项目51401016, 现代交通金属材料与加工技术北京实验室项目及新金属材料国家重点实验室基金项目2011Z-05资助
图1  不同轧制变形后304不锈钢的XRD谱
图2  不同轧制变形后304不锈钢马氏体转变量和硬度变化
Position 20% 40%
CR RTR CR RTR
RP 80.64 24.38 82.69 62.69
1/4T 77.10 17.04 - -
1/2T 74.14 13.18 81.77 33.41
表1  20%和40%超低温和室温轧制变形后试样不同厚度位置处的马氏体转变量
图3  淬火态304不锈钢显微组织的OM和EBSD像
图4  10%超低温及室温轧制变形后304不锈钢显微组织的EBSD像
图5  不同变形量超低温及室温轧制变形后304不锈钢显微组织的OM像
图6  以不同变形量超低温及室温轧制变形后304不锈钢显微组织的TEM像及SAED花样
图7  304不锈钢经50%超低温及室温轧制变形试样经不同温度退火后的马氏体转变量与显微硬度变化
图8  50%超低温及室温轧制变形试样经不同温度退火后显微组织的OM像
图9  50%超低温及室温轧制变形试样经900 ℃退火后显微组织的SEM像
图10  40%室温和超低温轧制变形后304不锈钢显微组织的TEM像及SAED花样
图11  50%超低温轧制变形后304不锈钢显微组织的TEM像
[1] Valiev R Z, Krasilnikov N A, Tsenev N K.Mater Sci Eng, 1991; A137: 35
[2] Valiev R , Kozlov E , Ivanov Y , Lian , Nazarov A , Baudelet B.Acta Metall Mater, 1994; 42: 2467
[3] Furukawa M, Horita Z, Nemoto M, Valiev R Z, Langdon T G.Acta Mater, 1996; 44: 4619
[4] Neishi K, Horita Z, Langdon T G.Mater Sci Eng, 2002; A54: 325
[5] Lee S, Utsunomiya A, Akamatsu K, Neishi K, Furukawa M, Horita Z, Langdon T G.Acta Mater, 2002; 50: 553
[6] Saito Y, Tsuji N, Utsunomiya H, Sakai T, Hong R G.Scr Mater, 1998; 39: 1221
[7] Tsuji N, Saito Y, Utsunomiya H, Tanigawa S.Scr Mater, 1999; 40: 795
[8] Tsuji N, Ito Y, Saito Y, Minamino Y.Scr Mater, 2002; 47: 893
[9] Abdulov R Z, Valiev R Z, Krasilnikov N A.J Mater Sci Lett, 1990; 9: 1445
[10] Valiev R Z, Ivanisenko Y V, Rauch E F, Baudelet B.Acta Mater, 1996; 44: 4705
[11] Lee Y B, Shin D H, Nam W J.J Mater Sci, 2005; 40: 797
[12] Weiss M, Taylor A S, Hodgson P D, Stanford N.Acta Mater, 2013; 61: 5278
[13] Wang Y M, Chen M W, Zhou F H, Ma E.Nature, 2002; 419: 912
[14] Zherebtsov S V, DyakonovG S,Salem A A , Sokolenko V I,Salishchev G A , Semiatin S L.Acta Mater, 2012; 61: 1167
[15] Lee Y B, Shin D H, Park K T, Nam W J.Scr Mater, 2004; 51: 355
[16] Forouzan F, Najafizadeh A, Kermanpur A, Kermanpur A, Hedayati A, Surkialiabad R.Mater Sci Eng, 2010; A527: 7334
[17] Das A, Chakraborti P C, Tarafder S, Bhadeshia H K D H.Mater Sci Technol, 2011; 27: 366
[18] Lu S HY.Stainless Steel.Beijing: Atomic Energy Press, 1995: 256
[18] (陆世英. 不锈钢. 北京:原子能出版社, 1995: 256)
[19] Chen D H.Properties and Microstructure of Stainless Steel. Beijing: China Machine Press, 1997: 27
[19] (陈德和. 不锈钢的性能与组织. 北京: 机械工业出版社, 1997: 27)
[20] Fischer F D, Reisner G, Werner E, Tanaka K, Cailletaud G, Antretter T.Int J Plast, 2000; 16: 723
[21] Dan W J, Li S H, Zhang W G, Lin Z Q.Mater Des, 2008; 29: 604
[22] Maki T.Curr Opin Solid State Mater Sci, 1997; 2: 290
[23] Padilha A F, Plaut R L, Rios P R.ISIJ Int, 2003; 43: 135
[24] Hecker S S, Stout M G, Staudhammer K P, Smith J L.Metall Trans, 1982; 13A: 619
[25] Rocha M R, Oliveira C A.Mater Sci Eng, 2009; A517: 281
[26] Bayerlein M, Christ H J, Mughrabi H.Mater Sci Eng, 1989; A114: L11
[27] Das A, Tarafder S.Int J Plast, 2009; 25: 2222
[28] Lebedev A A, Kosarchuk V V.Int J Plast, 2000; 16: 749
[29] Sabooni S, Karimzadeh F, Enayati M H, Ngan A H W.Mater Sci Eng, 2015; A636: 221
[30] Hu G, Xu C C, Zhang X S.J Huanggang Normal Univ, 2002; 22(3): 17
[30] (胡钢, 许淳淳, 张新生. 黄冈师范学院学报, 2002; 22(3): 17)
[31] Roy B, Kumar R, Das J.Mater Sci Eng, 2015; A631: 241
[32] Moser N H, Gross T S, Korkolis Y P.Metall Mater Trasn, 2014; 45A: 4891
[33] Cullity B D, Stock S R.Elements of X-Ray Diffraction. 3rd Ed .New Jersey: Prentice Hall, 2001: 1
[34] De A K, Murdock D C, Mataya M C, Speer J G, Matlock D K.Scr Mater, 2004; 50: 1445
[35] Huang X M, Xie T.Material Analysis Test Method. Beijing: National Defense Industry Press, 2008: 206
[35] (黄新民, 解挺. 材料分析测试方法. 北京: 国防工业出版社, 2008: 206)
[36] Shintani T, Murata Y.Acta Mater, 2011; 59: 4314
[37] Yang Z Y, Wang J, Chen J Y.Trans Mater Heat Treat, 2008; 29(1): 98
[37] (杨卓越, 王建, 陈嘉砚. 材料热处理学报, 2008; 29(1): 98)
[38] Olson G B, Cohen M.Metall Trans, 1975; 6A: 791
[39] Sato K, Ichinose M, Hirotsu Y, Inoue Y.ISIJ Int, 1989; 29: 868
[40] H?nninen H E.Int Mater Rev, 1979; 24: 85
[41] Sato A, Soma K, Mori T.Acta Metall, 1982; 30: 1901
[42] Seetharaman V, Krishnan R.J Mater Sci, 1981; 16: 523
[43] Allain S, Chateau J P, Bouaziz O, Migot S, Guelton N. Mater Sci Eng, 2004; A387-389: 158
[44] Curtze S, Kuokkala V T.Acta Mater, 2010; 58: 5129
[45] Sato K, Ichinose M, Hirotsu Y, Inoue Y.ISIJ Int, 1989; 29: 868
[46] Yang G, Huang C X, Wu S, Zhang Z.Acta Metall Sin, 2009; 45: 906
[46] (杨钢, 黄崇湘, 吴世丁, 张哲峰. 金属学报, 2009; 45: 906)
[47] Morito S, Tanaka H, Konishi R, Furuhara T, Maki T.Acta Mater, 2003; 51: 1789
[48] Xu Z Z.Martensite Transformation and Martensite .Beijing: China Science Press, 1980: 1
[48] (徐祖耀. 马氏体相变与马氏体. 北京: 科学出版社, 1980: 1)
[49] Xu X.Structure and Application of Steel. Chongqing: Sichuan People's Publishing House, 1981: 132
[49] (徐修炎. 钢的组织形态及其应用. 重庆: 四川人民出版社, 1981: 132)
[1] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[2] 李时磊, 李阳, 王友康, 王胜杰, 何伦华, 孙光爱, 肖体乔, 王沿东. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价[J]. 金属学报, 2023, 59(8): 1001-1014.
[3] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[4] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[5] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[6] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[7] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[8] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[9] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[10] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[11] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[12] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[13] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[14] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[15] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.