Please wait a minute...
金属学报  2016, Vol. 52 Issue (8): 956-964    DOI: 10.11900/0412.1961.2015.00547
  论文 本期目录 | 过刊浏览 |
Mn18Cr18N奥氏体不锈钢的压缩拉伸连续加载变形行为*
李飞,张华煜,何文武,陈慧琴(),郭会光
太原科技大学材料科学与工程学院, 太原 030024
COMPRESSION AND TENSILE CONSECUTIVE DEFORMATION BEHAVIOR OF Mn18Cr18N AUSTENITE STAINLESS STEEL
Fei LI,Huayu ZHANG,Wenwu HE,Huiqin CHEN(),Huiguang GUO
School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
引用本文:

李飞,张华煜,何文武,陈慧琴,郭会光. Mn18Cr18N奥氏体不锈钢的压缩拉伸连续加载变形行为*[J]. 金属学报, 2016, 52(8): 956-964.
Fei LI, Huayu ZHANG, Wenwu HE, Huiqin CHEN, Huiguang GUO. COMPRESSION AND TENSILE CONSECUTIVE DEFORMATION BEHAVIOR OF Mn18Cr18N AUSTENITE STAINLESS STEEL[J]. Acta Metall Sin, 2016, 52(8): 956-964.

全文: PDF(1408 KB)   HTML
摘要: 

采用压缩拉伸连续加载变形实验方法, 即第一阶段压缩变形量0%~40%, 第二阶段拉伸至断裂, 研究了Mn18Cr18N奥氏体不锈钢的室温压缩拉伸变形行为. 结果表明, 随着压缩量的增大, 后续拉伸阶段的屈服应力和均匀塑性变形最大拉伸应力、断面收缩率和延伸率均呈先增大后减小的变化规律. 临界压缩量25%处, 拉伸屈服应力和最大拉伸应力达到最大值, 分别约为1039.97和1439.20 MPa; 试样的断面收缩率和延伸率也达到最大值, 分别为68.99%和73.80%. 微观组织和断口形貌的OM和SEM观察结果表明, 当压缩量小于临界值时, 拉伸试样断口宏观形貌呈典型的杯锥状, 微观形貌呈韧窝状的韧性断裂, 微观组织为变形拉长的晶粒组织; 当压缩量超过临界值时, 拉伸试样断口宏观形貌比较平齐, 微观形貌为无韧窝状的结晶状特征, 微观组织为包含大量孪晶的等轴晶粒. TEM分析表明, 压缩量较小时, 位错通过滑移形成不同密度的位错组态; 反向加载拉断后, 仍能观察到位错的堆积. 压缩量较大时, 形成2个方向交割的孪晶; 反向加载拉断后, 孪晶呈平行排列, 且伴有高密度位错缠结.

关键词 Mn18Cr18N钢压缩拉伸连续加载变形力学行为断口形貌微观组织    
Abstract

The higher strength requirement of heavy generator retaining rings made of Mn18Cr18N austenitic stainless steel can be obtained by cold deformation strengthening. However, the yield ratio of Mn18Cr18N austenitic stainless steel is close to 1 gradually during the unidirectional tensile deformation, which will limit the unidirectional tensile deformation of cold deformation strengthening. In order to investigate the cold deformation strengthening by complex loading paths of Mn18Cr18N austenitic stainless steel, compression-tensile deformation behavior of Mn18Cr18N austenite stainless steel at room temperature was investigated by compression and tensile consecutive loading deformation experiments with the first compressive reduction range of 0%~40% and the second tensile range to fracture. Microstructure evolution, deformation dislocations, fracture behavior and mechanisms have been analyzed by OM, SEM and TEM. The results indicate that the subsequent tensile yield stress and the maximum tensile stress at the uniform plastic deformation stage, the reduction of cross sectional area and elongation increase at first and then decrease with the increase of compressive deformation. When the compressive deformation increases up to the critical reduction of 25%, the subsequent tensile yield stress and the maximum tensile stress reach up to the maximum values of 1039.97 and 1439.20 MPa respectively, and the reduction of cross sectional area and the elongation also reach up to the maximum values of 68.99% and 73.80% respectively. When the compressive deformation is less than the critical reduction, appearance of fractures shows the cup-cone shaped macroscopic fracture profiles, the dimpled microscopic fracture surfaces and the elongated grains. When the compressive deformation is greater than the critical reduction, fractures morphology is distinguished by the flat macroscopic fracture profiles, the crystalline microscopic fracture surfaces and the equiaxed grains with a lot twin structures. Several dislocation configurations with different density forms by dislocation slip when the compressive reduction is lower. Dislocation pile-up can be observed in the subsequent broken tensile specimen. Cross twins emerge in the specimen compressed up to 35% reduction. Twins with high density dislocation tangles arrange in parallel in the subsequent broken tensile specimen.

Key wordsMn18Cr18N steel    compression and tensile consecutive loading deformation    mechanical behavior    fracture morphology    microstructure
收稿日期: 2015-10-26     
基金资助:* 国家自然科学基金项目51575372, 山西省自然科学基金项目2014011015-4和山西省科技攻关计划(工业)项目201603D121006-2资助
图1  压缩拉伸试样示意图
图2  Mn18Cr18N奥氏体不锈钢原始组织
图3  Mn18Cr18N 奥氏体不锈钢压缩变形前后试样的XRD谱
图4  Mn18Cr18N奥氏体不锈钢经不同压缩变形量后的压缩拉伸真应力-应变曲线
图5  Mn18Cr18N奥氏体不锈钢压缩拉伸的典型应变和应力值随压缩量的变化
图6  Mn18Cr18N奥氏体不锈钢后续拉伸屈强比随压缩量的变化
图7  压缩变形对断面收缩率和延伸率的影响
图8  Mn18Cr18N奥氏体不锈钢经不同压缩变形后拉伸至断裂的纵截面宏观断口形貌
图9  Mn18Cr18N奥氏体不锈钢经不同压缩变形量后拉伸至断裂的断口形貌SEM像
图10  Mn18Cr18N奥氏体不锈钢不同压缩量下微观组织的OM像
图11  Mn18Cr18N奥氏体不锈钢断口纵截面组织的OM像
图12  Mn18Cr18N奥氏体不锈钢不同加载状态下的TEM像
[1] Gavriljuk V G, Berns H.High Nitrogen Steels: Structures, Properties, Manufacture, Apllicantions. Berlin: Springer, 1999: 271
[2] Wang Z H, Fu W T, Sun S H, Lv Z Q, Zhang W H.J. Mater Sci Technol, 2010; 26: 798
[3] Lee T H, Oh C S, Kim S J, Takaki S.Acta Mater, 2007; 55: 3649
[4] Stein G, Hucklenbroich I, Feichtinger H. Mater Sci Forum, 1999; 318~320: 151
[5] Mao G G.Electric Power, 2006; 39(7): 15
[5] (毛国光. 中国电力, 2006; 39(7): 15)
[6] Jiang Z H, Liu X H, Zhao L.Special Steel, 1999; 20(special issue): 82
[6] (姜周华, 刘喜海, 赵林. 特殊钢, 1999; 20(特刊): 82)
[7] Peng X H, Gao Z H, Ma M T, Yan Z X.Acta Metall Sin, 1993; 29: 429
[7] (彭向和, 高芝晖, 马鸣图, 颜在先. 金属学报, 1993; 29: 429)
[8] Wang Y Q, Chang T, Shi Y J.J Southeast Univ (Nat Sci Ed), 2012; 42: 1175
[8] (王元清, 常婷, 石永久. 东南大学学报(自然科学版), 2012; 42: 1175)
[9] Shi G, Wang F, Dai G X, Wang Y Q, Shi Y J.J Southeast Univ (Nat Sci Ed), 2011; 41: 1259
[9] (施刚, 王飞, 戴国欣, 王元清, 石永久. 东南大学学报(自然科学版), 2011; 41: 1259)
[10] Dusicka P, Itani A M, Buckle I G.J Constr Steel Res, 2007; 63(2): 156
[11] Wu Q, Chen Y Y, Zhou F.J Build Struct, 2014; 35(2): 89
[11] (吴旗, 陈以一, 周锋. 建筑结构学报, 2014; 35(2): 89)
[12] Soppa E A, Kohler C, Roos E.Mater Sci Eng, 2014; A597: 128
[13] Mishra A, Chellapandi P, Kumar R S, Sasikala G.Trans Indian Inst Met, 2015; 68: 623
[14] Eisenmeier G, Holzwarth B, Hoppel H W, Mughrabi H.Mater Sci Eng, 2001; A319: 578
[15] Yin S M, Yang H J, Li S X, Wu S D, Yang F.Scr Mater, 2008; 58: 751
[16] Mo D F, He G Q, Zhu Z Y, Liu X S, Zhang W H,Acta Metall Sin, 2009; 45: 861
[16] (莫德峰, 何国球, 朱正宇, 刘晓山, 张卫华. 金属学报, 2009; 45: 861)
[17] Zhang K S, Dong S H, Xu L B, Huang S H, Yuan Q P.Chin J Solid Mech, 2013; 34: 450
[17] (张克实, 董书惠, 许凌波, 黄世鸿, 袁秋平. 固体力学学报, 2013; 34: 450)
[18] Shin J H, Lee J W.Mater Charact, 2014; 91(5): 19
[19] Kocks U F,Philos Mag, 1966; 13: 541
[20] Fletham P, Meakin J D.Acta Metall, 1957; 5: 555
[21] Argon A S.Strengthening Mechanisms in Crystal Plasticity. New York: Oxford University Press, 2008: 283
[22] Wang S T, Yang K, Shan Y Y, Li L F.Acta Metall Sin, 2007; 43: 713
[22] (王松涛, 杨柯, 单以银, 李来风. 金属学报, 2007; 43: 713)
[23] Lou C, Zhang X Y, Wang R H, Duan G L, Liu Q.Acta Metall Sin, 2013; 49: 291
[23] (娄超, 张喜燕, 王润红, 段高林, 刘庆. 金属学报, 2013; 49: 291)
[24] Wang Y Y, Sun X, Wang Y D, Hu X H, Zbib H M.Mater Sci Eng, 2014; A607: 206
[25] Shi D K, Liu J H.Acta Metall Sin, 1989; 25: 282
[25] (石德珂, 刘军海. 金属学报, 1989; 25: 282)
[26] Chen Y Y, Zheng Z Q, Cai B, Xu J Q, She L J, Li H.Rare Met Mater Eng, 2011; 40: 1926
[26] (陈圆圆, 郑子樵, 蔡彪, 徐建秋, 佘玲娟, 李海. 稀有金属材料与工程, 2011, 40: 1926)
[1] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[2] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[3] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[4] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[5] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[6] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[7] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[8] 王凯, 晋玺, 焦志明, 乔珺威. CrFeNi中熵合金在宽温域拉伸条件下的力学行为与变形本构方程[J]. 金属学报, 2023, 59(2): 277-288.
[9] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[10] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[11] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[12] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[13] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.
[14] 李民, 李昊泽, 王继杰, 马颖澈, 刘奎. 稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响[J]. 金属学报, 2022, 58(5): 637-648.
[15] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.