Please wait a minute...
金属学报  2016, Vol. 52 Issue (8): 945-955    DOI: 10.11900/0412.1961.2015.00635
  论文 本期目录 | 过刊浏览 |
304奥氏体不锈钢超低温轧制变形诱发马氏体转变的定量分析及组织表征*
史金涛(),侯陇刚,左锦荣,卢林,崔华,张济山
北京科技大学新金属材料国家重点实验室, 北京 100083
QUANTITATIVE ANALYSIS OF THE MARTENSITE TRANSFORMATION AND MICROSTRUCTURE CHARACTERIZATION DURING CRYOGENIC ROLLING OF A 304 AUSTENITIC STAINLESS STEEL
Jintao SHI(),Longgang HOU,Jinrong ZUO,Lin LU,Hua CUI,Jishan ZHANG
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(2492 KB)   HTML
  
摘要: 

研究了304亚稳态奥氏体不锈钢在超低温和室温轧制变形过程中的宏、微观组织演变, 变形引起的马氏体转变及其对合金性能的影响. 结果表明, 超低温轧制比室温轧制能更有效地加速马氏体转变, 其中20%超低温轧制变形便可实现50%室温轧制变形下的马氏体转变量, 且超低温轧制变形最终可实现完全的马氏体转变. 同时, 超低温轧制引起的马氏体转变在板厚方向上较均匀, 显著优于室温轧制板材的板厚方向均匀性, 有助于提高亚稳态奥氏体不锈钢板厚方向性能的均匀性. 分析认为, 亚稳态奥氏体不锈钢在超低温和室温轧制过程中具有不同的变形机理, 前者主要以马氏体转变及其变形为主, 后者以奥氏体变形为主. 超低温轧制所获板材的硬度比室温轧制板材增长迅速, 但随变形量增大位错密度差距缩小, 最终导致两者硬度趋于一致. TEM表征结果表明, 超低温和室温轧制过程中引起的马氏体与母相基体间的取向关系遵循K-S (Kurduumov-Sachs)关系.

关键词 奥氏体不锈钢超低温轧制马氏体转变X射线衍射微观组织    
Abstract

Advanced material processing techniques have been successfully used to produce metals or alloys with submicro- or nano-sized grain structures with some possibly required harsh working environment that limits their industrial application. Cryogenic deformation might promote extensively severe deformation or distortion of metals or alloys (such as Al or aluminium alloys, Cu or copper alloys, Ti, Zr, etc.) so as to accumulate higher deformation energy (e.g., higher defect density) for the depression of the (dynamic) recovery, which will contribute to the microstructure refinement. Presently, the macro-/micro-structural evolution, the martensitic transformation as well as its effect on the mechanical property during the cryogenic and room temperature rolling of 304 metastable austenitic stainless steel were studied. It shows that the cryogenic rolling can effectively accelerate the martensitic transformation, e.g., after 20% cryogenic rolling the volume fraction of the transformed martensitic is equal to that after 50% room temperature rolling, and finally the cryogenic rolling can promote the complete martensitic transformation. Also the through-thickness uniformity of the martensitic transformation after cryogenic rolling is significantly better than that of the room temperature rolled one, which can help to improve the through-thickness performance uniformity. It is found that the deformation mechanisms are different for cryogenic and room temperature rolling metastable austenitic stainless steel: the martensitic transformation and its deformation occur in the former while austenitic deformation in the latter. The cryogenic rolling can quickly induce higher hardness than that of the room temperature rolled one, and the hardness tends to be equal finally because of the minimized dislocation density difference between these two rolled steels. TEM results indicate that the orientation relationship between the transformed martensite and the old austenite in the cryogenic and room temperature rolled sheets can still keep the K-S (Kurduumov-Sachs) relationship.

Key wordsaustenitic stainless steel    cryogenic rolling    martensite transformation    XRD    microstructure
收稿日期: 2015-12-09     
基金资助:* 国家自然科学基金项目51401016, 现代交通金属材料与加工技术北京实验室项目及新金属材料国家重点实验室基金项目2011Z-05资助

引用本文:

史金涛,侯陇刚,左锦荣,卢林,崔华,张济山. 304奥氏体不锈钢超低温轧制变形诱发马氏体转变的定量分析及组织表征*[J]. 金属学报, 2016, 52(8): 945-955.
Jintao SHI, Longgang HOU, Jinrong ZUO, Lin LU, Hua CUI, Jishan ZHANG. QUANTITATIVE ANALYSIS OF THE MARTENSITE TRANSFORMATION AND MICROSTRUCTURE CHARACTERIZATION DURING CRYOGENIC ROLLING OF A 304 AUSTENITIC STAINLESS STEEL. Acta Metall Sin, 2016, 52(8): 945-955.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2015.00635      或      https://www.ams.org.cn/CN/Y2016/V52/I8/945

图1  不同轧制变形后304不锈钢的XRD谱
图2  不同轧制变形后304不锈钢马氏体转变量和硬度变化
Position 20% 40%
CR RTR CR RTR
RP 80.64 24.38 82.69 62.69
1/4T 77.10 17.04 - -
1/2T 74.14 13.18 81.77 33.41
表1  20%和40%超低温和室温轧制变形后试样不同厚度位置处的马氏体转变量
图3  淬火态304不锈钢显微组织的OM和EBSD像
图4  10%超低温及室温轧制变形后304不锈钢显微组织的EBSD像
图5  不同变形量超低温及室温轧制变形后304不锈钢显微组织的OM像
图6  以不同变形量超低温及室温轧制变形后304不锈钢显微组织的TEM像及SAED花样
图7  304不锈钢经50%超低温及室温轧制变形试样经不同温度退火后的马氏体转变量与显微硬度变化
图8  50%超低温及室温轧制变形试样经不同温度退火后显微组织的OM像
图9  50%超低温及室温轧制变形试样经900 ℃退火后显微组织的SEM像
图10  40%室温和超低温轧制变形后304不锈钢显微组织的TEM像及SAED花样
图11  50%超低温轧制变形后304不锈钢显微组织的TEM像
[1] Valiev R Z, Krasilnikov N A, Tsenev N K.Mater Sci Eng, 1991; A137: 35
[2] Valiev R , Kozlov E , Ivanov Y , Lian , Nazarov A , Baudelet B.Acta Metall Mater, 1994; 42: 2467
[3] Furukawa M, Horita Z, Nemoto M, Valiev R Z, Langdon T G.Acta Mater, 1996; 44: 4619
[4] Neishi K, Horita Z, Langdon T G.Mater Sci Eng, 2002; A54: 325
[5] Lee S, Utsunomiya A, Akamatsu K, Neishi K, Furukawa M, Horita Z, Langdon T G.Acta Mater, 2002; 50: 553
[6] Saito Y, Tsuji N, Utsunomiya H, Sakai T, Hong R G.Scr Mater, 1998; 39: 1221
[7] Tsuji N, Saito Y, Utsunomiya H, Tanigawa S.Scr Mater, 1999; 40: 795
[8] Tsuji N, Ito Y, Saito Y, Minamino Y.Scr Mater, 2002; 47: 893
[9] Abdulov R Z, Valiev R Z, Krasilnikov N A.J Mater Sci Lett, 1990; 9: 1445
[10] Valiev R Z, Ivanisenko Y V, Rauch E F, Baudelet B.Acta Mater, 1996; 44: 4705
[11] Lee Y B, Shin D H, Nam W J.J Mater Sci, 2005; 40: 797
[12] Weiss M, Taylor A S, Hodgson P D, Stanford N.Acta Mater, 2013; 61: 5278
[13] Wang Y M, Chen M W, Zhou F H, Ma E.Nature, 2002; 419: 912
[14] Zherebtsov S V, DyakonovG S,Salem A A , Sokolenko V I,Salishchev G A , Semiatin S L.Acta Mater, 2012; 61: 1167
[15] Lee Y B, Shin D H, Park K T, Nam W J.Scr Mater, 2004; 51: 355
[16] Forouzan F, Najafizadeh A, Kermanpur A, Kermanpur A, Hedayati A, Surkialiabad R.Mater Sci Eng, 2010; A527: 7334
[17] Das A, Chakraborti P C, Tarafder S, Bhadeshia H K D H.Mater Sci Technol, 2011; 27: 366
[18] Lu S HY.Stainless Steel.Beijing: Atomic Energy Press, 1995: 256
[18] (陆世英. 不锈钢. 北京:原子能出版社, 1995: 256)
[19] Chen D H.Properties and Microstructure of Stainless Steel. Beijing: China Machine Press, 1997: 27
[19] (陈德和. 不锈钢的性能与组织. 北京: 机械工业出版社, 1997: 27)
[20] Fischer F D, Reisner G, Werner E, Tanaka K, Cailletaud G, Antretter T.Int J Plast, 2000; 16: 723
[21] Dan W J, Li S H, Zhang W G, Lin Z Q.Mater Des, 2008; 29: 604
[22] Maki T.Curr Opin Solid State Mater Sci, 1997; 2: 290
[23] Padilha A F, Plaut R L, Rios P R.ISIJ Int, 2003; 43: 135
[24] Hecker S S, Stout M G, Staudhammer K P, Smith J L.Metall Trans, 1982; 13A: 619
[25] Rocha M R, Oliveira C A.Mater Sci Eng, 2009; A517: 281
[26] Bayerlein M, Christ H J, Mughrabi H.Mater Sci Eng, 1989; A114: L11
[27] Das A, Tarafder S.Int J Plast, 2009; 25: 2222
[28] Lebedev A A, Kosarchuk V V.Int J Plast, 2000; 16: 749
[29] Sabooni S, Karimzadeh F, Enayati M H, Ngan A H W.Mater Sci Eng, 2015; A636: 221
[30] Hu G, Xu C C, Zhang X S.J Huanggang Normal Univ, 2002; 22(3): 17
[30] (胡钢, 许淳淳, 张新生. 黄冈师范学院学报, 2002; 22(3): 17)
[31] Roy B, Kumar R, Das J.Mater Sci Eng, 2015; A631: 241
[32] Moser N H, Gross T S, Korkolis Y P.Metall Mater Trasn, 2014; 45A: 4891
[33] Cullity B D, Stock S R.Elements of X-Ray Diffraction. 3rd Ed .New Jersey: Prentice Hall, 2001: 1
[34] De A K, Murdock D C, Mataya M C, Speer J G, Matlock D K.Scr Mater, 2004; 50: 1445
[35] Huang X M, Xie T.Material Analysis Test Method. Beijing: National Defense Industry Press, 2008: 206
[35] (黄新民, 解挺. 材料分析测试方法. 北京: 国防工业出版社, 2008: 206)
[36] Shintani T, Murata Y.Acta Mater, 2011; 59: 4314
[37] Yang Z Y, Wang J, Chen J Y.Trans Mater Heat Treat, 2008; 29(1): 98
[37] (杨卓越, 王建, 陈嘉砚. 材料热处理学报, 2008; 29(1): 98)
[38] Olson G B, Cohen M.Metall Trans, 1975; 6A: 791
[39] Sato K, Ichinose M, Hirotsu Y, Inoue Y.ISIJ Int, 1989; 29: 868
[40] H?nninen H E.Int Mater Rev, 1979; 24: 85
[41] Sato A, Soma K, Mori T.Acta Metall, 1982; 30: 1901
[42] Seetharaman V, Krishnan R.J Mater Sci, 1981; 16: 523
[43] Allain S, Chateau J P, Bouaziz O, Migot S, Guelton N. Mater Sci Eng, 2004; A387-389: 158
[44] Curtze S, Kuokkala V T.Acta Mater, 2010; 58: 5129
[45] Sato K, Ichinose M, Hirotsu Y, Inoue Y.ISIJ Int, 1989; 29: 868
[46] Yang G, Huang C X, Wu S, Zhang Z.Acta Metall Sin, 2009; 45: 906
[46] (杨钢, 黄崇湘, 吴世丁, 张哲峰. 金属学报, 2009; 45: 906)
[47] Morito S, Tanaka H, Konishi R, Furuhara T, Maki T.Acta Mater, 2003; 51: 1789
[48] Xu Z Z.Martensite Transformation and Martensite .Beijing: China Science Press, 1980: 1
[48] (徐祖耀. 马氏体相变与马氏体. 北京: 科学出版社, 1980: 1)
[49] Xu X.Structure and Application of Steel. Chongqing: Sichuan People's Publishing House, 1981: 132
[49] (徐修炎. 钢的组织形态及其应用. 重庆: 四川人民出版社, 1981: 132)
[1] 刘震鹏, 闫志巧, 陈峰, 王顺成, 龙莹, 吴益雄. 金刚石工具用Cu-10Sn-xNi合金的制备和性能表征[J]. 金属学报, 2020, 56(5): 760-768.
[2] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[3] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[4] 李亦庄,黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493.
[5] 彭云,宋亮,赵琳,马成勇,赵海燕,田志凌. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56(4): 601-618.
[6] 张乐,王威,M. Babar Shahzad,单以银,杨柯. 新型多层金属复合材料的制备与性能[J]. 金属学报, 2020, 56(3): 351-360.
[7] 李长记,邹敏杰,张磊,王元明,王甦程. 外延膜的高分辨X射线衍射分析[J]. 金属学报, 2020, 56(1): 99-111.
[8] 马晋遥,王晋,赵云松,张剑,张跃飞,李吉学,张泽. 一种第二代镍基单晶高温合金1150 ℃原位拉伸断裂机制研究[J]. 金属学报, 2019, 55(8): 987-996.
[9] 彭剑,高毅,代巧,王颖,李凯尚. 316L奥氏体不锈钢非对称载荷下的疲劳与循环塑性行为[J]. 金属学报, 2019, 55(6): 773-782.
[10] 刘耀鸿,王朝辉,刘轲,李淑波,杜文博. Er对Mg-5Zn-xEr镁合金热裂敏感性的影响[J]. 金属学报, 2019, 55(3): 389-398.
[11] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[12] 姚彦桃, 陈礼清, 王文广. 原位反应浸渗法制备(B4C+Ti)混杂增强Mg及AZ91D复合材料及其阻尼性能[J]. 金属学报, 2019, 55(1): 141-148.
[13] 赵晓丽, 张永健, 邵成伟, 惠卫军, 董瀚. 两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性[J]. 金属学报, 2018, 54(7): 1031-1041.
[14] 李金富, 周尧和. 液态金属深过冷快速凝固过程中初生固相的重熔[J]. 金属学报, 2018, 54(5): 627-636.
[15] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.