Please wait a minute...
金属学报  2016, Vol. 52 Issue (11): 1379-1387    DOI: 10.11900/0412.1961.2016.00056
  本期目录 | 过刊浏览 |
Zr-Ce-Co-Cu难混溶合金的液-液相分离和双非晶相形成*
王中原1,2,何杰1(),杨柏俊1,江鸿翔1,赵九洲1,王同敏2,郝红日1
1 中国科学院金属研究所, 沈阳 1100162 大连理工大学材料科学与工程学院, 大连 116024
LIQUID-LIQUID PHASE SEPARATION AND FORMA-TION OF TWO GLASSY PHASES IN Zr-Ce-Co-CuIMMISCIBLE ALLOYS
Zhongyuan WANG1,2,Jie HE1(),Baijun YANG1,Hongxiang JIANG1,Jiuzhou ZHAO1,Tongmin WANG2,Hongri HAO1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
引用本文:

王中原,何杰,杨柏俊,江鸿翔,赵九洲,王同敏,郝红日. Zr-Ce-Co-Cu难混溶合金的液-液相分离和双非晶相形成*[J]. 金属学报, 2016, 52(11): 1379-1387.
Zhongyuan WANG, Jie HE, Baijun YANG, Hongxiang JIANG, Jiuzhou ZHAO, Tongmin WANG, Hongri HAO. LIQUID-LIQUID PHASE SEPARATION AND FORMA-TION OF TWO GLASSY PHASES IN Zr-Ce-Co-CuIMMISCIBLE ALLOYS[J]. Acta Metall Sin, 2016, 52(11): 1379-1387.

全文: PDF(1386 KB)   HTML
摘要: 

在Zr-Ce二元稳态难混溶合金的基础上添加Co-Cu二元亚稳态难混溶合金, 设计了四元(ZraCeb)(1-x)(CocCud)x复合难混溶合金. 通过热力学计算了Cu和Co在两分离液相中的分配系数, 并利用OM, SEM, EDS, XRD和DTA等方法研究了相形成和组织演变的机制. 结果表明, 单一均匀的(ZraCeb)(1-x)(CocCud)x合金熔体在凝固过程中发生液相分离, Co和Cu元素分别分布在富Zr和富Ce液相中, 最终形成富Zr-Co和富Ce-Cu两液相. 在快速凝固条件下, 四元合金液-液分离形成的富Zr-Co和富Ce-Cu两液相分别发生玻璃转变, 形成锆基和铈基两非晶相. 实验研究与热力学分析相结合, 揭示了Co与Cu原子比例和Co-Cu合金添加量以及冷却速率对双非晶相形成的影响, 探索了由难混溶合金制备相分离非晶合金的方法. 当Co与Cu原子比及添加量分别为4∶1和38.5%时, 在熔体旋甩快速冷却条件下可以获得双相非晶合金.

关键词 液-液相分离,Zr-Ce难混溶合金,快速凝固,相分离非晶合金,微观组织    
Abstract

The liquid-liquid phase separation has been used recently to design two-glassy-phase alloys with desirable mechanical, magnetic and thermal properties. The occurrence of the liquid-liquid phase separation in the Zr-Ce binary immiscible alloys can lead to the formation of two coexistent crystalline Zr-rich and Ce-rich phases after complete solidification. In this work, a new quaternary complex alloy system (ZraCeb)(1-x)(CocCud)x was designed on the basis of the addition of metastable Co-Cu immiscible alloys in the stable Zr-Ce immiscible alloys. Distribution ratio of Co and Cu in two coexistent liquids was calculated. The mechanisms of phase formation and microstructure evolution were investigated using OM, SEM, EDS, XRD and DTA. The results show that a single-phase homogeneous melt of (ZraCeb)(1-x)(CocCud)x alloys takes place the liquid-liquid phase separation during cooling through the miscibility gap. The metal elements Co and Cu are mainly concentrated in the Zr-rich and Ce-rich liquids, respectively, which results in the formation of the two coexistent Zr-Co-rich and Ce-Cu-rich liquids. It was found that the coexistent Zr-Co-rich and Ce-Cu-rich liquids undergo liquid-to-glass transition and thus form dual glassy phases under the rapid quenching, respectively. The effects of the atomic ratio of Co and Cu, the addition amount and the cooling rate on the formation of the glassy phases have been discussed in detail by combining the experimental investigation with the thermodynamic analysis. A strategy for synthesizing liquid-phase-separated metallic glasses on the basis of suitably designed immiscible alloys has been proposed. Two-glassy-phase alloys can be obtained by rapidly quenching alloy melt in which the atomic ratio of Co and Cu and the addition amount are 4∶1 and 38.5%, respectively.

Key wordsliquid-liquid    phase    separation,    Zr-Ce    immiscible    alloy,    rapid    quenching,    two-glassy-phase    alloy,    microstructure
收稿日期: 2016-02-02     
基金资助:* 国家自然科学基金项目51374194, 51574216和51271185, 以及辽宁省自然科学基金项目 2015020172资助
Alloy a b c d x
No.1 75 25 0 0 0
No.2 89 11 83 17 0.340
No.3 89 11 80 20 0.340
No.4 89 11 77 23 0.340
No.5 89 11 72 28 0.340
No.6 89 11 77 23 0.367
No.7 89 11 77 23 0.385
No.8 89 11 80 20 0.385
表1  (ZraCeb)(1-x)(CocCud)x合金名义成分
图1  No.1合金液-液相分离的凝固组织
图2  No.8合金元素Zr, Co, Ce和Cu的分布, 以及Co和Cu在两分离液相中的分配
图3  No.8合金在不同冷却条件下的凝固组织, 富Ce-Cu相的尺寸分布和相组成
图4  No.2~No.8合金薄带的XRD谱
图5  No.3, No.5和No.8合金在加热速率为10 K/min的DTA曲线
图6  No.8合金熔体液-液相分离后形成的富Zr-Co和富Ce-Cu两区域后各自的凝固组织
图7  No.3和No.5合金液-液相分离形成的富Zr-Co区域的凝固组织
[1] Jia J, Zhao J Z, Guo J J, Liu Y.Immiscible Alloys and Their Manufacturing Technique. Harbin: Harbin Institure of Technology Press, 2002: 1
[1] (贾均, 赵九洲, 郭景杰, 刘源. 难混溶合金及其制备技术. 哈尔滨: 哈尔滨工业大学出版社, 2002: 1 )
[2] Massalski T B, Okamoto H, Subramanian P R, Kacprzak L.Binary Alloy Phase Diagrams. New York: ASM International, 1990: 1
[3] Cao C D, G?rler G P, Herlach D M, Wei B.Mater Sci Eng, 2002; A325: 503
[4] He J, Zhao J Z, Ratke L.Acta Mater, 2006; 54: 1749
[5] Wilde G, Perepezko H J.Acta Mater, 1999; 47: 3009
[6] Gr?bner J, Schmid-Fetzer R.JOM, 2005; 57(9): 19
[7] Wang C P, Liu X J, Ohnuma I, Kainuma R, Ishida K.J Phase Equilib, 2002; 23(3): 236
[8] Mirkovic D, Gr?bner J, Schmid-Fetzer R. Acta Mater, 2008; 56: 5214
[9] Wang C P, Liu X J, Ohnuma I, Kainuma R, Ishida K.Science, 2002; 297: 990
[10] Zhao J Z.Scr Mater, 2006; 54: 247
[11] He J, Zhao J Z, Wang X F, Gao L L.Metall Mater Trans, 2005; 36A: 2449
[12] Jiang H X, He J, Zhao J Z.Sci Rep, 2015; 5: 12680
[13] Wang W L, Wu Y H, Li L H, Zhai W, Zhang X M, Wei B.Sci Rep, 2015; 5: 16335
[14] Li J Q, Ma B Q, Min S, Lee J, Yuan Z F, Zang L K.Mater Lett, 2010; 64: 814
[15] He J, Li H Q, Zhao J Z, Dai C L.Appl Phys Lett, 2008; 93: 131907
[16] He J, Li H Q, Xing C Y, Zhao J Z.Acta Metall Sin, 2010; 46: 41
[16] (何杰, 李海权, 兴成尧, 赵九洲. 金属学报, 2010; 46: 41)
[17] Yu Y, Takaku Y, Nagasako M, Wang C P, Liu X J, Kainuma R, Ishida K.Intermetallics, 2012; 25: 95
[18] Cao C D, Gong S L, Guo J B, Song R B, Sun Z B, Yang S, Wang W M.Chin Phys, 2012; 21B: 086102
[19] He J, Jiang H X, Chen S, Zhao J Z, Zhao L.J Non-Cryst Solids, 2011; 357: 3561
[20] Ratke L, Diefenbach S.Mater Sci Eng, 1995; R15: 263
[21] Liu Y, Guo J J, Jia J. Foundry, 2000; 49(1): 11(刘源, 郭景杰, 贾均. 铸造, 2000; 49(1): 11)
[22] He J H, Sheng H W, Schilling P J, Chien C L, Ma E.Phys Rev Lett, 2001; 86: 2826
[23] Ma E.Prog Mater Sci, 2005; 50: 413
[24] Zhong L, Wang J W, Sheng H W, Zhang Z, Mao S X.Nature, 2014; 512: 177
[25] Sugiyama K, Shinohara A H, Waseda Y, Chen S, Inoue A.Mater Trans JIM, 1994; 35: 481
[26] Kündig A A, Ohnuma M, Ping D H, Ohkubo T, Hono K.Acta Mater, 2004; 52: 2441
[27] Mattern N, Kühn U, Gebert A, Gemming T, Zinkevich M, Wendrock H, Schultz L.Scr Mater, 2005; 53: 271
[28] Park E S, Jeong E Y, Lee J K, Bae J C, Kwon A R, Gebert A, Schultz L, Chang H L, Kim D H.Scr Mater, 2007; 56: 197
[29] Chang H J, Yook W, Park E S, Kyeong J S, Kim D H.Acta Mater, 2010; 58: 2483
[30] Park B J, Chang H J, Kim D H, Kim W T, Chattopadhyay K, Abinandanan T A, Bhattacharyya S.Phys Rev Lett, 2006; 96: 245503
[31] He J, Mattern N, Tan J, Zhao J Z, Kaban I, Wang Z, Ratke L, Kim D H, Kim W T, Eckert J.Acta Mater, 2013; 61: 2102
[32] He J, Matern N, Kaban I, Dai F, Song K, Yan Z, Zhao J Z, Kim D H, Eckert J.J Alloys Compd, 2015; 618: 795
[33] Hui X D, Chen G L. Bulk Metallic Glass.Beijing: Chemical Industry Press, 2007: 8
[33] (惠希东, 陈国良. 块体非晶合金. 北京: 化学工业出版社, 2007: 8)
[34] Kim D H, Kim W T, Park E S, Mattern N, Eckert J.Prog Mater Sci, 2013; 58: 1103
[35] Concustell A, Mattern N, Wendrock H, Kuehn U, Gebert A, Eckert J, Greer A L, Sort J, Baró M D.Scr Mater, 2007; 56: 85
[36] Park E S, Jeong E Y, Lee J K, Bae J C, Kwon A R, Gebert A, Schultz L, Chang H J, Kim D H.Scr Mater, 2007; 56: 197
[37] Gebert A, Kündig A A, Schultz L, Hono K.Scr Mater, 2004; 51: 961
[38] He J, Kaban I, Mattern N, Song K, Sun B, Zhao J Z, Kim D H, Eckert J, Greer A L.Sci Rep, 2016; 6: 25832
[39] Takeuchi A, Inoue A.Mater Trans, 2005; 46: 2817
[40] Liu X J, Zhang H H, Wang C P, Ishida K.J Alloys Compd, 2009; 482: 99
[41] He X C, Wang H, Liu H S, Jin Z P.Calphad, 2006; 30: 367
[42] Su X P, Zhang W J, Du Z M.J Alloys Compd, 1998; 267: 121
[43] Bo H, Zhang L G, Chen X M, Chen H M, Liu L B, Zheng F, Jin Z P.J Alloys Compd, 2009; 484: 286
[44] Palumbo M, Curiotto S, Battezzati L.Calphad, 2006; 30: 171
[45] Marangoni C. Ann Phys Chem#/magtechI#, 1871; 143: 337
[46] Ratke L, Voorhees P W.Growth and Coarsening. Berlin: Springer, 2002: 1
[47] Zhai W, Liu H M, Wei B.Mater Lett, 2015; 141: 221
[48] Li Y.Mater Trans, 2001; 42: 556
[49] Lu Z P, Liu C T.Acta Mater, 2002; 50: 3501
[1] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[2] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[3] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[4] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[5] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[6] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[7] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[8] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[9] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[10] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[11] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[12] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[13] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.
[14] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.
[15] 何焕生, 余黎明, 刘晨曦, 李会军, 高秋志, 刘永长. 新一代马氏体耐热钢G115的研究进展[J]. 金属学报, 2022, 58(3): 311-323.