Please wait a minute...
金属学报  2016, Vol. 52 Issue (11): 1379-1387    DOI: 10.11900/0412.1961.2016.00056
  本期目录 | 过刊浏览 |
Zr-Ce-Co-Cu难混溶合金的液-液相分离和双非晶相形成*
王中原1,2,何杰1(),杨柏俊1,江鸿翔1,赵九洲1,王同敏2,郝红日1
1 中国科学院金属研究所, 沈阳 1100162 大连理工大学材料科学与工程学院, 大连 116024
LIQUID-LIQUID PHASE SEPARATION AND FORMA-TION OF TWO GLASSY PHASES IN Zr-Ce-Co-CuIMMISCIBLE ALLOYS
Zhongyuan WANG1,2,Jie HE1(),Baijun YANG1,Hongxiang JIANG1,Jiuzhou ZHAO1,Tongmin WANG2,Hongri HAO1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
全文: PDF(1386 KB)   HTML
摘要: 

在Zr-Ce二元稳态难混溶合金的基础上添加Co-Cu二元亚稳态难混溶合金, 设计了四元(ZraCeb)(1-x)(CocCud)x复合难混溶合金. 通过热力学计算了Cu和Co在两分离液相中的分配系数, 并利用OM, SEM, EDS, XRD和DTA等方法研究了相形成和组织演变的机制. 结果表明, 单一均匀的(ZraCeb)(1-x)(CocCud)x合金熔体在凝固过程中发生液相分离, Co和Cu元素分别分布在富Zr和富Ce液相中, 最终形成富Zr-Co和富Ce-Cu两液相. 在快速凝固条件下, 四元合金液-液分离形成的富Zr-Co和富Ce-Cu两液相分别发生玻璃转变, 形成锆基和铈基两非晶相. 实验研究与热力学分析相结合, 揭示了Co与Cu原子比例和Co-Cu合金添加量以及冷却速率对双非晶相形成的影响, 探索了由难混溶合金制备相分离非晶合金的方法. 当Co与Cu原子比及添加量分别为4∶1和38.5%时, 在熔体旋甩快速冷却条件下可以获得双相非晶合金.

关键词 液-液相分离,Zr-Ce难混溶合金,快速凝固,相分离非晶合金,微观组织    
Abstract

The liquid-liquid phase separation has been used recently to design two-glassy-phase alloys with desirable mechanical, magnetic and thermal properties. The occurrence of the liquid-liquid phase separation in the Zr-Ce binary immiscible alloys can lead to the formation of two coexistent crystalline Zr-rich and Ce-rich phases after complete solidification. In this work, a new quaternary complex alloy system (ZraCeb)(1-x)(CocCud)x was designed on the basis of the addition of metastable Co-Cu immiscible alloys in the stable Zr-Ce immiscible alloys. Distribution ratio of Co and Cu in two coexistent liquids was calculated. The mechanisms of phase formation and microstructure evolution were investigated using OM, SEM, EDS, XRD and DTA. The results show that a single-phase homogeneous melt of (ZraCeb)(1-x)(CocCud)x alloys takes place the liquid-liquid phase separation during cooling through the miscibility gap. The metal elements Co and Cu are mainly concentrated in the Zr-rich and Ce-rich liquids, respectively, which results in the formation of the two coexistent Zr-Co-rich and Ce-Cu-rich liquids. It was found that the coexistent Zr-Co-rich and Ce-Cu-rich liquids undergo liquid-to-glass transition and thus form dual glassy phases under the rapid quenching, respectively. The effects of the atomic ratio of Co and Cu, the addition amount and the cooling rate on the formation of the glassy phases have been discussed in detail by combining the experimental investigation with the thermodynamic analysis. A strategy for synthesizing liquid-phase-separated metallic glasses on the basis of suitably designed immiscible alloys has been proposed. Two-glassy-phase alloys can be obtained by rapidly quenching alloy melt in which the atomic ratio of Co and Cu and the addition amount are 4∶1 and 38.5%, respectively.

Key wordsliquid-liquid    phase    separation,    Zr-Ce    immiscible    alloy,    rapid    quenching,    two-glassy-phase    alloy,    microstructure
收稿日期: 2016-02-02     
基金资助:* 国家自然科学基金项目51374194, 51574216和51271185, 以及辽宁省自然科学基金项目 2015020172资助

引用本文:

王中原,何杰,杨柏俊,江鸿翔,赵九洲,王同敏,郝红日. Zr-Ce-Co-Cu难混溶合金的液-液相分离和双非晶相形成*[J]. 金属学报, 2016, 52(11): 1379-1387.
Zhongyuan WANG, Jie HE, Baijun YANG, Hongxiang JIANG, Jiuzhou ZHAO, Tongmin WANG, Hongri HAO. LIQUID-LIQUID PHASE SEPARATION AND FORMA-TION OF TWO GLASSY PHASES IN Zr-Ce-Co-CuIMMISCIBLE ALLOYS. Acta Metall Sin, 2016, 52(11): 1379-1387.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2016.00056      或      https://www.ams.org.cn/CN/Y2016/V52/I11/1379

Alloy a b c d x
No.1 75 25 0 0 0
No.2 89 11 83 17 0.340
No.3 89 11 80 20 0.340
No.4 89 11 77 23 0.340
No.5 89 11 72 28 0.340
No.6 89 11 77 23 0.367
No.7 89 11 77 23 0.385
No.8 89 11 80 20 0.385
表1  (ZraCeb)(1-x)(CocCud)x合金名义成分
图1  No.1合金液-液相分离的凝固组织
图2  No.8合金元素Zr, Co, Ce和Cu的分布, 以及Co和Cu在两分离液相中的分配
图3  No.8合金在不同冷却条件下的凝固组织, 富Ce-Cu相的尺寸分布和相组成
图4  No.2~No.8合金薄带的XRD谱
图5  No.3, No.5和No.8合金在加热速率为10 K/min的DTA曲线
图6  No.8合金熔体液-液相分离后形成的富Zr-Co和富Ce-Cu两区域后各自的凝固组织
图7  No.3和No.5合金液-液相分离形成的富Zr-Co区域的凝固组织
[1] Jia J, Zhao J Z, Guo J J, Liu Y.Immiscible Alloys and Their Manufacturing Technique. Harbin: Harbin Institure of Technology Press, 2002: 1
[1] (贾均, 赵九洲, 郭景杰, 刘源. 难混溶合金及其制备技术. 哈尔滨: 哈尔滨工业大学出版社, 2002: 1 )
[2] Massalski T B, Okamoto H, Subramanian P R, Kacprzak L.Binary Alloy Phase Diagrams. New York: ASM International, 1990: 1
[3] Cao C D, G?rler G P, Herlach D M, Wei B.Mater Sci Eng, 2002; A325: 503
[4] He J, Zhao J Z, Ratke L.Acta Mater, 2006; 54: 1749
[5] Wilde G, Perepezko H J.Acta Mater, 1999; 47: 3009
[6] Gr?bner J, Schmid-Fetzer R.JOM, 2005; 57(9): 19
[7] Wang C P, Liu X J, Ohnuma I, Kainuma R, Ishida K.J Phase Equilib, 2002; 23(3): 236
[8] Mirkovic D, Gr?bner J, Schmid-Fetzer R. Acta Mater, 2008; 56: 5214
[9] Wang C P, Liu X J, Ohnuma I, Kainuma R, Ishida K.Science, 2002; 297: 990
[10] Zhao J Z.Scr Mater, 2006; 54: 247
[11] He J, Zhao J Z, Wang X F, Gao L L.Metall Mater Trans, 2005; 36A: 2449
[12] Jiang H X, He J, Zhao J Z.Sci Rep, 2015; 5: 12680
[13] Wang W L, Wu Y H, Li L H, Zhai W, Zhang X M, Wei B.Sci Rep, 2015; 5: 16335
[14] Li J Q, Ma B Q, Min S, Lee J, Yuan Z F, Zang L K.Mater Lett, 2010; 64: 814
[15] He J, Li H Q, Zhao J Z, Dai C L.Appl Phys Lett, 2008; 93: 131907
[16] He J, Li H Q, Xing C Y, Zhao J Z.Acta Metall Sin, 2010; 46: 41
[16] (何杰, 李海权, 兴成尧, 赵九洲. 金属学报, 2010; 46: 41)
[17] Yu Y, Takaku Y, Nagasako M, Wang C P, Liu X J, Kainuma R, Ishida K.Intermetallics, 2012; 25: 95
[18] Cao C D, Gong S L, Guo J B, Song R B, Sun Z B, Yang S, Wang W M.Chin Phys, 2012; 21B: 086102
[19] He J, Jiang H X, Chen S, Zhao J Z, Zhao L.J Non-Cryst Solids, 2011; 357: 3561
[20] Ratke L, Diefenbach S.Mater Sci Eng, 1995; R15: 263
[21] Liu Y, Guo J J, Jia J. Foundry, 2000; 49(1): 11(刘源, 郭景杰, 贾均. 铸造, 2000; 49(1): 11)
[22] He J H, Sheng H W, Schilling P J, Chien C L, Ma E.Phys Rev Lett, 2001; 86: 2826
[23] Ma E.Prog Mater Sci, 2005; 50: 413
[24] Zhong L, Wang J W, Sheng H W, Zhang Z, Mao S X.Nature, 2014; 512: 177
[25] Sugiyama K, Shinohara A H, Waseda Y, Chen S, Inoue A.Mater Trans JIM, 1994; 35: 481
[26] Kündig A A, Ohnuma M, Ping D H, Ohkubo T, Hono K.Acta Mater, 2004; 52: 2441
[27] Mattern N, Kühn U, Gebert A, Gemming T, Zinkevich M, Wendrock H, Schultz L.Scr Mater, 2005; 53: 271
[28] Park E S, Jeong E Y, Lee J K, Bae J C, Kwon A R, Gebert A, Schultz L, Chang H L, Kim D H.Scr Mater, 2007; 56: 197
[29] Chang H J, Yook W, Park E S, Kyeong J S, Kim D H.Acta Mater, 2010; 58: 2483
[30] Park B J, Chang H J, Kim D H, Kim W T, Chattopadhyay K, Abinandanan T A, Bhattacharyya S.Phys Rev Lett, 2006; 96: 245503
[31] He J, Mattern N, Tan J, Zhao J Z, Kaban I, Wang Z, Ratke L, Kim D H, Kim W T, Eckert J.Acta Mater, 2013; 61: 2102
[32] He J, Matern N, Kaban I, Dai F, Song K, Yan Z, Zhao J Z, Kim D H, Eckert J.J Alloys Compd, 2015; 618: 795
[33] Hui X D, Chen G L. Bulk Metallic Glass.Beijing: Chemical Industry Press, 2007: 8
[33] (惠希东, 陈国良. 块体非晶合金. 北京: 化学工业出版社, 2007: 8)
[34] Kim D H, Kim W T, Park E S, Mattern N, Eckert J.Prog Mater Sci, 2013; 58: 1103
[35] Concustell A, Mattern N, Wendrock H, Kuehn U, Gebert A, Eckert J, Greer A L, Sort J, Baró M D.Scr Mater, 2007; 56: 85
[36] Park E S, Jeong E Y, Lee J K, Bae J C, Kwon A R, Gebert A, Schultz L, Chang H J, Kim D H.Scr Mater, 2007; 56: 197
[37] Gebert A, Kündig A A, Schultz L, Hono K.Scr Mater, 2004; 51: 961
[38] He J, Kaban I, Mattern N, Song K, Sun B, Zhao J Z, Kim D H, Eckert J, Greer A L.Sci Rep, 2016; 6: 25832
[39] Takeuchi A, Inoue A.Mater Trans, 2005; 46: 2817
[40] Liu X J, Zhang H H, Wang C P, Ishida K.J Alloys Compd, 2009; 482: 99
[41] He X C, Wang H, Liu H S, Jin Z P.Calphad, 2006; 30: 367
[42] Su X P, Zhang W J, Du Z M.J Alloys Compd, 1998; 267: 121
[43] Bo H, Zhang L G, Chen X M, Chen H M, Liu L B, Zheng F, Jin Z P.J Alloys Compd, 2009; 484: 286
[44] Palumbo M, Curiotto S, Battezzati L.Calphad, 2006; 30: 171
[45] Marangoni C. Ann Phys Chem#/magtechI#, 1871; 143: 337
[46] Ratke L, Voorhees P W.Growth and Coarsening. Berlin: Springer, 2002: 1
[47] Zhai W, Liu H M, Wei B.Mater Lett, 2015; 141: 221
[48] Li Y.Mater Trans, 2001; 42: 556
[49] Lu Z P, Liu C T.Acta Mater, 2002; 50: 3501
[1] 刘震鹏, 闫志巧, 陈峰, 王顺成, 龙莹, 吴益雄. 金刚石工具用Cu-10Sn-xNi合金的制备和性能表征[J]. 金属学报, 2020, 56(5): 760-768.
[2] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[3] 邓聪坤,江鸿翔,赵九洲,何杰,赵雷. Ag-Ni偏晶合金凝固过程研究[J]. 金属学报, 2020, 56(2): 212-220.
[4] 马晋遥,王晋,赵云松,张剑,张跃飞,李吉学,张泽. 一种第二代镍基单晶高温合金1150 ℃原位拉伸断裂机制研究[J]. 金属学报, 2019, 55(8): 987-996.
[5] 陈斌,何杰,孙小钧,赵九洲,江鸿翔,张丽丽,郝红日. Fe-Cu-Pb合金液-液相分离及废旧电路板混合金属分级分离与回收[J]. 金属学报, 2019, 55(6): 751-761.
[6] 刘耀鸿,王朝辉,刘轲,李淑波,杜文博. Er对Mg-5Zn-xEr镁合金热裂敏感性的影响[J]. 金属学报, 2019, 55(3): 389-398.
[7] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[8] 姚彦桃, 陈礼清, 王文广. 原位反应浸渗法制备(B4C+Ti)混杂增强Mg及AZ91D复合材料及其阻尼性能[J]. 金属学报, 2019, 55(1): 141-148.
[9] 赵晓丽, 张永健, 邵成伟, 惠卫军, 董瀚. 两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性[J]. 金属学报, 2018, 54(7): 1031-1041.
[10] 李金富, 周尧和. 液态金属深过冷快速凝固过程中初生固相的重熔[J]. 金属学报, 2018, 54(5): 627-636.
[11] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[12] 吴国华, 陈玉狮, 丁文江. 高性能镁合金凝固组织控制研究现状与展望[J]. 金属学报, 2018, 54(5): 637-646.
[13] 翟斌, 周凯, 吕鹏, 王海鹏. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54(5): 824-830.
[14] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
[15] 熊守美, 杜经莲, 郭志鹏, 杨满红, 吴孟武, 毕成, 曹永友. 镁合金压铸过程界面传热行为及凝固组织结构的表征与模拟研究[J]. 金属学报, 2018, 54(2): 174-192.