Please wait a minute...
金属学报  2013, Vol. 49 Issue (8): 917-924    DOI: 10.3724/SP.J.1037.2013.00176
  论文 本期目录 | 过刊浏览 |
Cu低碳钢Q&P工艺处理的组织性能与强化机理
闫述1),刘相华1,2),刘伟杰2),蓝慧芳1),吴红艳1)
1)东北大学轧制技术及连轧自动化国家重点实验室, 沈阳 110819\par
2)东北大学研究院, 沈阳 110819
MICROSTRUCTURE, MECHANICAL PROPERTIES AND STRENGTHENING MECHANISMS OF A Cu BEARING LOW-CARBON STEEL TREATED BY Q&P PROCESS
YAN Shu1), LIU Xianghua1,2), LIU WJ2), LAN Huifang1), WU Hongyan1)
1) The State Key Laboratory of Rolling & Automation, Northeastern University, Shenyang 110819
2) Research Academy, Northeastern University, Shenyang 110819
引用本文:

闫述,刘相华,刘伟杰,蓝慧芳,吴红艳. 含Cu低碳钢Q&P工艺处理的组织性能与强化机理[J]. 金属学报, 2013, 49(8): 917-924.
YAN Shu, LIU Xianghua, LIU WJ, LAN Huifang, WU Hongyan. MICROSTRUCTURE, MECHANICAL PROPERTIES AND STRENGTHENING MECHANISMS OF A Cu BEARING LOW-CARBON STEEL TREATED BY Q&P PROCESS[J]. Acta Metall Sin, 2013, 49(8): 917-924.

全文: PDF(1074 KB)  
摘要: 

在带钢连续退火实验机上, 对一种含Cu低碳实验钢进行了Q&P处理,并使用扫描电镜、电子背散射衍射、X射线衍射、透射电镜及室温拉伸实验等手段对其显微组织和力学性能进行了表征.结果表明, 富Cu粒子可以在Q&P处理过程中析出, 呈圆球形, 直径多为9-20 nm,弥散分布于马氏体板条内部. 根据Orowan机制, 该析出相对强度的贡献量约为134 MPa.同时观察到, 钢中残余奥氏体的形貌分布各异, 主要有薄膜状、小颗粒状和大块状.实验钢的综合力学性能良好, 强塑积可达21.2 GPa·%, 抗拉强度达到1326 MPa,延伸率16.0%, 其优异的综合力学性能主要得益于残余奥氏体的形变诱发相变, 即TRIP效应.

关键词 Q&P处理残余奥氏体Cu粒子强塑积    
Abstract

A low carbon steel containing Cu addition was treated by Q&P process using a CAS-200 continuous annealing simulator. The microstructure of the steel was characterized by means of SEM, EBSD, XRD and TEM and its mechanical properties were investigated by tensile testing at room temperature. Cu-rich precipitates formed during the Q&P process were observed as spherical particles in martensitic laths and are 9 nm to 20 nm in diameter. According to the Orowan mechanism, those fine particles may have a contribution to the yield strength of the steel about 134 MPa. Also observed are three different morphologies of the retained austenite phase in the test steel, i.e. thin film--like, fine granular and blocky, formed at different locations. The test steel has a good comprehensive mechanical properties, of which the product of tensile strength and elongation, the tensile strength and the total elongation are as high as 21.2 GPa·%, 1326 MPa and 16 %, respectively. The excellent combined properties can be attributed to the effect of transformation induced plasticity (TRIP) caused by the retained austenite.

Key wordsQ&P process    retained austenite    Cu-rich particle    product of tensile strength and elongation
收稿日期: 2013-04-04     
基金资助:

国家自然科学基金资助项目51034009

作者简介: 闫述, 男, 1986年生, 博士生

[1] Matas S, Hehemann R F.  Nature, 1960; 187: 685 [2] Hsu T Y, Li X M.  Acta Metall Sin, 1983; 19: A83
(徐祖耀, 李学敏. 金属学报, 1983; 19: A83)
[3] Bhadeshia H K D H.  Bainite in Steels. 2nd Ed, London: Cambridge University Press, 2001: 373
[4] Speer J G, Matlock D K, De Cooman B C, Schroth J G.  Acta Mater, 2003; 51: 2611
[5] Speer J G, Edmonds D V, Rizzo F C, Matlock D K.  Curr Opin Solid State Mater Sci, 2004; 8: 219
[6] Clarke A J, Speer J G, Miller M K, Hackenberg R E, Edmonds D V, Matlock D K, Rizzo F C, Clarke K D, De Moor E.  Acta Mater, 2008; 56: 16
[7] Santofimia M J, Zhao L, Sietsma J.  Metall Mater Trans, 2008; 40A: 46
[8] Liu H P, Lu X W, Jin X J, Dong H, Shi J.  Scr Mater, 2011; 64: 749
[9] De Moor E, Lacroixs S, Clarke A J, Penning J, Speer J G.  Metall Meter Trans, 2008; 39A: 2586
[10] Clarke A J.  PhD Dissertation, Colorado School of Mines, 2006
[11] Tsuchiyama T, Tobata J, Nakada N, Takaki S.  Mater Sci Eng, 2012; A532: 585
[12] Li H Y, Lu X W, Li W J, Jin X J.  Metall Mater Trans, 2010; 41A: 1284
[13] Santofimia M J, Zhao L, Petrov R, Kwakernaak C, Sloof W G, Sietsma J.Acta Mater, 2011; 59: 6059
[14] Edmonds D V, He K, Rizzo F C, De Cooman B C, Matlock D K, Speer J G.Mater Sci Eng, 2006; A438-404: 25
[15] Wang C Y, Shi J, Cao W Q, Dong H.  Acta Metall Sin, 2011; 47: 720
(王存宇, 时捷, 曹文权, 董瀚. 金属学报, 2011; 47: 720)
[16] Hsu T Y.  Mater Sci Forum, 2007; 561: 2283
[17] Thomas G A, Speer J G, Matlock D K.  Metall Mater Trans, 2011; 42A: 3652
[18] Yi H L, Chen P, Hou Z Y, Hong N, Cai H L, Xu Y B, Wu D, Wang G D.Scr Mater, 2013; 68: 370
[19] van Dijk N H, Butt A M, Zhao L, Sietsma J, Offerman S E, Wright J P,van der Zwaag S.  Acta Mater, 2005; 53: 5439
[20] Zhong N, Wang X D, Rong Y H, Wang L J.  Mater Sci Technol, 2006; 22: 751
[21] Takahashi J, Kawakami K, Kobayashi Y.  Mater Sci Eng, 2012; A535: 144
[22] Sen I, Amankwah E, Kumar N S, Fleury E, Oh--ishi K, Hono K, Ramamurty U.Mater Sci Eng, 2011; A528: 4491
[23] Santofimia M J, Zhao L, Siemtsma J.  Metall Mater Trans, 2011; 42A: 3620
[24] Yong Q L.  Second Phases in Structural Steels.Beijing: Metallurgical Industry Press, 2006: 42
(雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 42)
[25] Kim S A, Johnson W L.  Mater Sci Eng, 2007; A452-453: 633
[26] Olson N J.  PhD Dissertation, Lowa State University, 1970

[1] 程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.
[2] 陈学双, 黄兴民, 刘俊杰, 吕超, 张娟. 一种含富锰偏析带的热轧临界退火中锰钢的组织调控及强化机制[J]. 金属学报, 2023, 59(11): 1448-1456.
[3] 蒋中华, 杜军毅, 王培, 郑建能, 李殿中, 李依依. M-A岛高温回火转变产物对核电SA508-3钢冲击韧性影响机制[J]. 金属学报, 2021, 57(7): 891-902.
[4] 刘曼, 胡海江, 田俊羽, 徐光. 变形对超高强贝氏体钢组织和力学性能的影响[J]. 金属学报, 2021, 57(6): 749-756.
[5] 罗海文,沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512.
[6] 田亚强,田耕,郑小平,陈连生,徐勇,张士宏. 淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性[J]. 金属学报, 2019, 55(3): 332-340.
[7] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[8] 潘栋, 赵宇光, 徐晓峰, 王艺橦, 江文强, 鞠虹. 高能瞬时电脉冲处理对42CrMo钢组织与性能的影响[J]. 金属学报, 2018, 54(9): 1245-1252.
[9] 杨继兰, 蒋元凯, 顾剑锋, 郭正洪, 陈海龑. 奥氏体化温度对中碳淬火-配分钢干滑动摩擦磨损性能的影响[J]. 金属学报, 2018, 54(1): 21-30.
[10] 黄龙,邓想涛,刘佳,王昭东. 0.12C-3.0Mn低碳中锰钢中残余奥氏体稳定性与低温韧性的关系[J]. 金属学报, 2017, 53(3): 316-324.
[11] 桂晓露,张宝祥,高古辉,赵平,白秉哲,翁宇庆. Q-P-T处理贝氏体/马氏体复相高强钢疲劳断裂特性研究*[J]. 金属学报, 2016, 52(9): 1036-1044.
[12] 谢振家,尚成嘉,周文浩,吴彬彬. 低合金多相钢中残余奥氏体对塑性和韧性的影响*[J]. 金属学报, 2016, 52(2): 224-232.
[13] 陈连生, 张健杨, 田亚强, 宋进英, 徐勇, 张士宏. 预先Mn配分处理对Q&P钢中C配分及残余奥氏体的影响*[J]. 金属学报, 2015, 51(5): 527-536.
[14] 李小琳, 王昭东. 一步Q&P工艺对双马氏体钢微观组织与力学性能的影响*[J]. 金属学报, 2015, 51(5): 537-544.
[15] 周文浩, 谢振家, 郭晖, 尚成嘉. 700 MPa级高塑低碳低合金钢的多相组织调控及性能[J]. 金属学报, 2015, 51(4): 407-416.