Please wait a minute...
金属学报  2017, Vol. 53 Issue (3): 316-324    DOI: 10.11900/0412.1961.2016.00373
  本期目录 | 过刊浏览 |
0.12C-3.0Mn低碳中锰钢中残余奥氏体稳定性与低温韧性的关系
黄龙,邓想涛(),刘佳,王昭东
东北大学轧制技术及连轧自动化国家重点实验室 沈阳 110819
Relationship Between Retained Austenite Stability and Cryogenic Impact Toughness in 0.12C-3.0Mn Low Carbon Medium Manganese Steel
Long HUANG,Xiangtao DENG(),Jia LIU,Zhaodong WANG
State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819, China
引用本文:

黄龙,邓想涛,刘佳,王昭东. 0.12C-3.0Mn低碳中锰钢中残余奥氏体稳定性与低温韧性的关系[J]. 金属学报, 2017, 53(3): 316-324.
Long HUANG, Xiangtao DENG, Jia LIU, Zhaodong WANG. Relationship Between Retained Austenite Stability and Cryogenic Impact Toughness in 0.12C-3.0Mn Low Carbon Medium Manganese Steel[J]. Acta Metall Sin, 2017, 53(3): 316-324.

全文: PDF(13543 KB)   HTML
摘要: 

采用完全淬火+两相区淬火+临界区淬火的三步热处理方式,利用SEM、EBSD、XRD、TEM和EPMA等手段研究了0.12C-3.0Mn低碳中锰钢组织演变规律和力学性能,并对0.12C-3.0Mn钢进行了-40~-196 ℃的系统低温冲击实验研究。结果表明,三步热处理后0.12C-3.0Mn钢的组织为临界铁素体、马氏体/贝氏体和残余奥氏体,残余奥氏体呈块状和条状分布在原奥氏体晶界上和马氏体/贝氏体板条界上,残余奥氏体主要通过临界淬火富集C和Mn元素达到稳定,室温下稳定的残余奥氏体含量最高可达到15%。由于残余奥氏体的应变诱导塑性(TRIP)效应,0.12C-3.0Mn钢具有良好的塑性和优异的低温韧性:断后总延伸率高于30%,均匀延伸率高于16%,-80 ℃下冲击功可达到200 J。

关键词 残余奥氏体低温韧性临界热处理中锰钢    
Abstract

Low carbon and low alloy steels require good combination of strength and ductility to ensure safety and stability of structures, and the low temperature toughness has become more significant to low carbon low alloyed high performance steel recently. Retained austenite plays a great role in a multiphase system to improve the toughness of steel as a result of the deformation induced transformation of retained austenite when the steel deformed. In this work, the characterization of multiphase microstructure including retained austenite, tempered martensite and intercritical ferrite which obtained by a three-step intercritical heat treatment in a low carbon medium manganese steel were studied, and the low-temperature impact toughness evolution from -40~-196 ℃ during the process were analyzed. The results showed that C and Mn distributed unevenly after intercritical quenching and were benefit to martensite inverse transformation to austenite, and the enriched C and Mn elements can improve the stability of reverted austenite during the tempering process. The impact energy of the steel is 200 J at -80 ℃ during the processes at intercritical quenching temperature 720 ℃ and tempering temperature 640 ℃, and the energy of impact crack formation and propagation at different temperature were also analyzed.

Key wordsretained austenite    cryogenic impact toughness    intercritical heat treatment    medium manganese steel
收稿日期: 2016-08-17     
基金资助:国家自然科学基金项目Nos.51234002, 51504064和51474064及国家重点基础研究发展计划项目No.2016YFB0300601
图1  0.12C-3.0Mn钢三步临界热处理工艺示意图
图2  膨胀法测得0.12C-3.0Mn钢热轧和两相区淬火后的相变点
图3  0.12C-3.0Mn钢经不同阶段热处理后的SEM像
图4  不同温度临界区热处理后试样的EBSD像
图5  不同温度临界区淬火试样XRD谱
图6  CQ680试样中残余奥氏体形态TEM像
图7  CQ680试样中C和Mn元素分布图
Sample σs / MPa σb / MPa A / % Ag / %
CQ620 505 640 30.4 16
CQ640 480 625 34.8 22
CQ660 455 625 36.0 24
CQ680 440 710 40.4 24
表1  0.12C-3.0Mn钢不同温度临界热处理后的拉伸性能
Sample Volume fraction Impact energy / J
of RA / % -40 ℃ -80 ℃ -100 ℃ -150 ℃ -196 ℃
CQ620 7 257 181 123 42 3
CQ640 10 278 210 120 47 4
CQ660 13 262 100 88 36 8
CQ680 15 113 76 63 11 8
表2  CQ620、CQ640、CQ660和CQ680中残余奥氏体含量及其低温冲击功
图8  冲击试样断口形貌
图9  不同工艺条件和冲击温度下试样的冲击功曲线及示波冲击位移-载荷和位移-吸收能量曲线
图10  冲击实验后CQ660试样的EBSD像
[1] Wang C J, Liang J X, Liu Z B, et al.Effect of metastable austenite on mechanical property and mechanism in cryogenic steel applied and oceaneering[J]. Acta Metall. Sin., 2016, 52: 385
[1] (王长军, 梁剑雄, 刘振宝等. 亚稳奥氏体对低温海工用钢力学性能的影响与机理[J]. 金属学报, 2016, 52: 385)
[2] Zhang K, Tang D, Wu H B.Effect of heating rate before tempering on reversed austenite in Fe-9Ni-C alloy[J]. J. Iron Steel Res. Int., 2012, 19: 73
[3] Gao G H, Zhang H, Gui X L, et al.Enhanced ductility and toughness in an ultrahigh-strength Mn-Si-Cr-C steel: The great potential of ultrafine filmy retained austenite[J]. Acta Mater., 2014, 76: 425
[4] Chen J, Lv M Y, Tang S, et al.Correlation between mechanical properties and retained austenite characteristics in a low-carbon medium manganese alloyed steel plate[J]. Mater. Charact., 2015, 106: 108
[5] Chen J, Lv M Y, Liu Z Y, et al.Combination of ductility and toughness by the design of fine ferrite/tempered martensite-austenite microstructure in a low carbon medium manganese alloyed steel plate[J]. Mater. Sci. Eng., 2015, A648: 51
[6] Xie Z J, Yuan S F, Zhou W H, et al.Stabilization of retained austenite by the two-step intercritical heat treatment and its effect on the toughness of a low alloyed steel[J]. Mater. Des., 2014, 59: 193
[7] Hoshino M, Saitoh N, Muraoka H, et al.Development of super-9% Ni steel plates with superior low-temperature toughness for LNG storage tanks[J]. Nippon Steel Technical Report, 2004, 90
[7] (星野学, 斎藤直樹, 村岡寛英等. LNGタンク用高靭性スーパー9%Ni鋼の開発[J]. 新日鉄技報, 2004, 90)
[8] Niikura M, Morris J W.Thermal processing of ferritic 5Mn steel for toughness at cryogenic temperatures[J]. Metall. Trans., 1980, 11A: 1531
[9] Kim J I, Syn C K, Morris J W.Microstructural sources of toughness in QLT-treated 5.5Ni cryogenic steel[J]. Metall. Trans., 1983, 14A: 93
[10] Speer J G, Edmonds D V, Rizzo F C, et al.Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation[J]. Curr. Opin. Solid St. M., 2004, 8: 219
[11] Clarke A J, Speer J G, Miller M K, et al.Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q&P) process: a critical assessment[J]. Acta Mater., 2008, 56: 16
[12] Wu R M, Li W, Zhou S, et al.Effect of retained austenite on the fracture toughness of quenching and partitioning (Q&P)-treated sheet steels[J]. Metall. Mater. Trans., 2014, 45A: 1892
[13] Xu Z Y.New processes for steel heat treatment[J]. Heat Treat., 2007, 22(1): 1
[13] (徐祖耀. 钢热处理的新工艺[J]. 热处理, 2007, 22(1): 1)
[14] Xu Z Y.A brief introduction to quenching-partitioning-tempering (Q-P-T) process[J]. Heat Treat. Met., 2009, 34(6): 1
[14] (徐祖耀. 淬火-碳分配-回火, 2009, 34(6): 1)
[15] Zhou W H, Guo H, Xie Z J, et al.High strength low-carbon alloyed steel with good ductility by combining the retained austenite and nano-sized precipitates[J]. Mater. Sci. Eng., 2013, A587: 365
[16] Zhou W H, Wang X L, Venkatsurya P K C, et al. Structure-mechanical property relationship in a high strength low carbon alloy steel processed by two-step intercritical annealing and intercritical tempering[J]. Mater. Sci. Eng., 2014, A607: 569
[17] Zhou W H, Xie Z J, Guo H, et al.Regulation of multi-phase microstructure and mechanical properties in a 700 MPa grade low carbon low alloy steel with good ductility[J]. Acta Metall. Sin., 2015, 51: 407
[17] (周文浩, 谢振家, 郭晖等. 700 MPa级高塑低碳低合金钢的多相组织调控及性能[J]. 金属学报, 2015, 51: 407)
[18] Xie Z J, Han G, Zhou W H, et al.Study of retained austenite and nano-scale precipitation and their effects on properties of a low alloyed multi-phase steel by the two-step intercritical treatment[J]. Mater. Charact., 2016, 113: 60
[19] Hu J, Du L X, Sun G S, et al.The determining role of reversed austenite in enhancing toughness of a novel ultra-low carbon medium manganese high strength steel[J]. Scr. Mater., 2015, 104: 87
[20] Cai Z H, Ding H, Misra R D K, et al. Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content[J]. Acta Mater., 2015, 84: 229
[21] Zhang S, Findley K O.Quantitative assessment of the effects of microstructure on the stability of retained austenite in TRIP steels[J]. Acta Mater., 2013, 61: 1895
[22] Zhou Q, Qian L H, Tan J, et al.Inconsistent effects of mechanical stability of retained austenite on ductility and toughness of transformation-induced plasticity steels[J]. Mater. Sci. Eng., 2013, A578: 370
[23] Fultz B, Kim J I, Kim Y H, et al.The stability of precipitated austenite and the toughness of 9Ni steel[J]. Metall. Trans., 1985, 16A: 2237
[24] Yuan L, Ponge D, Wittig J, et al.Nanoscale austenite reversion through partitioning, segregation and kinetic freezing: Example of a ductile 2 GPa Fe-Cr-C steel[J]. Acta Mater., 2012, 60: 2790
[25] Tan X D, Xu Y B, Yang X L, et al.Microstructure-properties relationship in a one-step quenched and partitioned steel[J]. Mater. Sci. Eng., 2014, A589: 101
[26] Santofimia M J, Nguyen-Minh T, Zhao L, et al.New low carbon Q&P steels containing film-like intercritical ferrite[J]. Mater. Sci. Eng., 2010, A527: 6429
[27] Yen H W, Ooi S W, Eizadjou M, et al.Role of stress-assisted martensite in the design of strong ultrafine-grained duplex steels[J]. Acta Mater., 2015, 82: 100
[1] 陈学双, 黄兴民, 刘俊杰, 吕超, 张娟. 一种含富锰偏析带的热轧临界退火中锰钢的组织调控及强化机制[J]. 金属学报, 2023, 59(11): 1448-1456.
[2] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[3] 沈国慧, 胡斌, 杨占兵, 罗海文. 回火温度对含 δ 铁素体高铝中锰钢力学性能和显微组织的影响[J]. 金属学报, 2022, 58(2): 165-174.
[4] 周成, 赵坦, 叶其斌, 田勇, 王昭东, 高秀华. 回火温度对1000 MPaNiCrMoV低碳合金钢微观组织和低温韧性的影响[J]. 金属学报, 2022, 58(12): 1557-1569.
[5] 蒋中华, 杜军毅, 王培, 郑建能, 李殿中, 李依依. M-A岛高温回火转变产物对核电SA508-3钢冲击韧性影响机制[J]. 金属学报, 2021, 57(7): 891-902.
[6] 刘曼, 胡海江, 田俊羽, 徐光. 变形对超高强贝氏体钢组织和力学性能的影响[J]. 金属学报, 2021, 57(6): 749-756.
[7] 罗海文,沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512.
[8] 王存宇,常颖,周峰峦,曹文全,董瀚,翁宇庆. 高强度高塑性第三代汽车钢的M3组织调控理论与技术[J]. 金属学报, 2020, 56(4): 400-410.
[9] 田亚强,田耕,郑小平,陈连生,徐勇,张士宏. 淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性[J]. 金属学报, 2019, 55(3): 332-340.
[10] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[11] 潘栋, 赵宇光, 徐晓峰, 王艺橦, 江文强, 鞠虹. 高能瞬时电脉冲处理对42CrMo钢组织与性能的影响[J]. 金属学报, 2018, 54(9): 1245-1252.
[12] 赵晓丽, 张永健, 邵成伟, 惠卫军, 董瀚. 两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性[J]. 金属学报, 2018, 54(7): 1031-1041.
[13] 阳锋, 罗海文, 董瀚. 退火温度对冷轧7Mn钢拉伸行为的影响及模拟研究[J]. 金属学报, 2018, 54(6): 859-867.
[14] 杨继兰, 蒋元凯, 顾剑锋, 郭正洪, 陈海龑. 奥氏体化温度对中碳淬火-配分钢干滑动摩擦磨损性能的影响[J]. 金属学报, 2018, 54(1): 21-30.
[15] 王猛, 刘振宇, 李成刚. 轧后超快冷及亚温淬火对5%Ni钢微观组织与低温韧性的影响机理[J]. 金属学报, 2017, 53(8): 947-956.