Please wait a minute...
金属学报  2016, Vol. 52 Issue (9): 1036-1044    DOI: 10.11900/0412.1961.2015.00660
  论文 本期目录 | 过刊浏览 |
Q-P-T处理贝氏体/马氏体复相高强钢疲劳断裂特性研究*
桂晓露1,张宝祥2,高古辉1(),赵平3,白秉哲1,3,翁宇庆1,3
1 北京交通大学机电学院材料中心, 北京 100044
2 北京有色金属研究总院有研亿金新材料有限公司, 北京 102200
3 清华大学材料学院先进材料教育部重点实验室, 北京 100084
FATIGUE BEHAVIOR OF BAINITE/MARTENSITE MULTIPHASE HIGH STRENGTH STEEL TREATEDBY QUENCHING-PARTITIONING-TEMPERING PROCESS
Xiaolu GUI1,Baoxiang ZHANG2,Guhui GAO1(),Ping ZHAO3,Bingzhe BAI1,3,Yuqing WENG1,3
1 Materials Science and Engineering Research Center, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
2 GRIKIN Advanced Materials Co. Ltd., Beijing General Research Institute of Nonferrous Metals, Beijing 102200, China
3 Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
引用本文:

桂晓露,张宝祥,高古辉,赵平,白秉哲,翁宇庆. Q-P-T处理贝氏体/马氏体复相高强钢疲劳断裂特性研究*[J]. 金属学报, 2016, 52(9): 1036-1044.
Xiaolu GUI, Baoxiang ZHANG, Guhui GAO, Ping ZHAO, Bingzhe BAI, Yuqing WENG. FATIGUE BEHAVIOR OF BAINITE/MARTENSITE MULTIPHASE HIGH STRENGTH STEEL TREATEDBY QUENCHING-PARTITIONING-TEMPERING PROCESS[J]. Acta Metall Sin, 2016, 52(9): 1036-1044.

全文: PDF(1800 KB)   HTML
  
摘要: 

对20Mn2SiCrNiMo贝氏体/马氏体复相高强钢进行淬火-配分-回火(Q-P-T)工艺处理, 并采用紧凑拉伸试样进行疲劳实验. 结果表明, Q-P-T工艺参数对贝氏体/马氏体复相高强钢的疲劳断裂特性具有显著影响, 经过合理的Q-P-T工艺处理的贝氏体/马氏体复相高强钢具有较高的疲劳门槛值(ΔKth=13.2 MPam1/2)及较低的裂纹扩展速率. 显微组织及裂纹扩展路径观察显示, Q-P-T处理的贝氏体/马氏体复相高强钢的显微组织包括贝氏体、马氏体和残余奥氏体薄膜, 其中“柳叶状”贝氏体及纳米级残余奥氏体薄膜可以阻碍裂纹扩展, 迫使裂纹转折、分叉或“间断”, 这是贝氏体/马氏体复相高强钢疲劳断裂性能改善的主要因素.

关键词 疲劳断裂贝氏体淬火-配分-回火工艺残余奥氏体显微组织    
Abstract

Recently, low-cost advanced high strength steels (AHSS) with high toughness and fatigue limit have been developed in order to ensure the safety and lightweight of the engineering components. As promising candidates for next generation of AHSS, the bainite/martensite multiphase high strength steels exhibit excellent combination of strength and toughness due to the refined multiphase microstructure and retained austenite films located between bainitic ferrite laths. The previous works showed that the mechanical properties of bainite/martensite multiphase steels can be further improved through quenching-partitioning-tempering (Q-P-T) process. In the present work, the effect of Q-P-T process on the microstructure and fatigue behaviors of steels was investigated, and the relationship between the microstructure and the fatigue crack propagation was discussed in detail. Here, a 20Mn2SiCrNiMo bainite/martensite multiphase steel was treated by Q-P-T processes: (1) quenching to 200 ℃, partitioning at 280 ℃ for 45 min and finally tempering at 250 ℃ for 2 h (QPT200 sample); (2) quenching to 320 ℃, partitioning at 360 ℃ for 45 min and finally tempering at 250 ℃ for 2 h (QPT320 sample). Microstructure observations showed that the QPT200 sample consisted of leaf-shaped bainite, martensite and filmy retained austenite (RA), while some blocky martensite/austenite (M/A) islands were observed in QPT320 sample. The volume fractions of retained austenite in QPT200 and QPT320 samples are 4.5% and 9.8%, respectively. The fatigue crack propagation rate da/dN and threshold value of fatigue cracking ΔKth were measured using compact-tensile specimens. The results showed that the Q-P-T process parameters had a significant influence on the microstructures and fatigue properties of the bainite/martensite multiphase steels. The bainite/martensite multiphase steel after appropriate Q-P-T treatment (QPT 200 sample in the present work) has higher ΔKth and lower da/dN, which originates from the resistance on fatigue crack propagation due to the presence of leaf-shaped bainite and nanometer-sized retained austenite films. Furthermore, although the volume fraction of retained austenite in QPT320 sample is higher than that in QPT200 sample, the ΔKth of QPT 320 sample is lower than that of QPT200 sample. It is suggested that the effect of retained austenite on the fatigue behaviors depends on its volume fraction, size and morphology.

Key wordsfatigue fracture    bainite    quenching-partitioning-tempering process    retained austenite    microstructure
收稿日期: 2015-12-28     
基金资助:* 国家自然科学基金资助项目51271013
图1  测试疲劳裂纹扩展速率用紧凑拉伸(C-T)试样示意图
Sample Rm Rp0.2 At Agt AKV
MPa MPa % % Jcm-2
QPT200 1407 1131 15.16 5.43 80
QPT320 1319 996 18.76 8.16 30
表1  QPT200和QPT320试样的常规力学性能
图2  20MnSiCrNiMo钢经不同淬火-配分-回火(Q-P-T)工艺处理的QPT200和QPT320试样显微组织的SEM像和EBSD像
图3  QPT200试样残余奥氏体的TEM像
图4  QPT200和QPT320试样的疲劳裂纹扩展速率-应力强度因子(da/dN-ΔK)曲线
图5  QPT200试样门槛值区疲劳裂纹扩展路径
图6  QPT320试样门槛值区疲劳裂纹扩展路径
图7  QPT200和QPT320试样的疲劳断口形貌
[1] Rong Y H.Acta Metall Sin, 2011; 47: 1483
[1] (戎咏华. 金属学报, 2011; 47: 1483)
[2] Matlock D K, Brautigam V E, Speer J G. Mater Sci Forum, 2003; 426-432: 1089
[3] Zhao P, Gao G H,Misra R D K, Bai B Z. Mater Sci Eng, 2015; A630: 1
[4] Zhang Y J, Hui W J, Xiang J Z, Dong H, Weng Y Q.Acta Metall Sin, 2009; 45: 880
[4] (张永健, 惠卫军, 项金钟, 董瀚, 翁宇庆. 金属学报, 2009; 45: 880)
[5] Gao G H, Zhang H, Tan Z L, Liu W B, Bai B Z.Mater Sci Eng, 2013; A559: 165
[6] Zhang C, Fang H S, Yang Z G, Bai B Z, Zhang W Z.Acta Metall Sin, 2001; 37: 561
[6] (张弛, 方鸿生, 杨志刚, 白秉哲, 张文征. 金属学报, 2001; 37: 561)
[7] Parker E R.Metall Trans, 1977; 8A: 1025
[8] Zhang K, Xu W Z, Guo Z H, Rong Y H, Wang M Q, Dong H.Acta Metall Sin, 2011; 47: 489
[8] (张柯, 许为宗, 郭正洪, 戎咏华, 王毛球, 董瀚. 金属学报, 2011; 47: 489)
[9] Blonde R, Jimenez-Melero E, Zhao L, Wright J P, Bruck E, Zwaag van der S, Dijk van N H.Mater Sci Eng, 2014; A618: 280
[10] Speer J G, Matlock D K, Cooman B C, Shroch J G.Acta Mater, 2003; 51: 2661
[11] Edmonds D V, He K, Rizzo F C, Cooman De B C, Matlock D K, Speer J G. Mater Sci Eng, 2006; A438-440: 25
[12] Wang X D, Guo Z H, Rong Y H.Mater Sci Eng, 2011; A529: 35
[13] Zhou S, Zhang K, Wang Y, Gu J F, Rong Y H.Mater Sci Eng, 2011; A528: 8006
[14] Gao G H, Zhang H, Gui X L, Tan Z L, Bai B Z, Weng Y Q.Acta Mater, 2015; 101: 31
[15] Gao G H, Zhang H, Gui X L, Luo P, Tan Z L, Bai B Z.Acta Mater, 2014; 76: 425
[16] Wei D Y, Gu J L, Fang H S, Bai B Z.Acta Metall Sin, 2003; 39: 734
[16] (韦东远, 顾家琳, 方鸿生, 白秉哲. 金属学报, 2003; 39: 734)
[17] Yu Y, Gu J L, Bai B Z, Liu Y B, Li S X.Mater Sci Eng, 2009; A527: 212
[18] de Diego-Calderon I, Rodriguez-Calvillo P, Lara A, Molina-Aldareguia J M, Petrov R H, De Knijf D, Sabirov I.Mater Sci Eng, 2015; A641: 215
[19] Fan X.Metallic X-Ray Physics. Beijing: Mechanical Industry Press, 1989: 159
[19] (范雄.金属X射线学. 北京: 机械工业出版社, 1989: 159)
[20] Wang S C, Wu Y W, Hua Y, Li Z C, Zhang H.J Mater Sci, 2010; 45: 5892
[21] Gao G H, Zhang H, Gui X L, Tan Z L, Bai B Z.J Mater Sci Technol, 2015; 31: 199
[22] Hsu T Y, Jin X J, Rong Y H.J Alloys Compd, 2013; 577S: 568
[23] Sun J, Yu H, Wang S, Fan Y.Mater Sci Eng, 2014; A596: 89
[24] Gao G H, Gui X L, An B F, Tan Z L, Bai B Z, Weng Y Q.Acta Metall Sin, 2015; 51: 21
[24] (高古辉, 桂晓露, 安佰锋, 谭谆礼, 白秉哲, 翁宇庆. 金属学报, 2015; 51: 21)
[25] Bhadeshia H K D H, Edmonds D V.Met Sci, 1983; 17: 411
[26] Bhadeshia H K D H, Edmonds D V.Met Sci, 1983; 17: 420
[27] Nie W J, Shang C J, You Y, Zhang X B, Sundaresa S.Acta Metall Sin, 2012; 48: 797
[27] (聂文金, 尚成嘉, 由洋, 张晓兵, Sundaresa S. 金属学报, 2012; 48: 797)
[28] Berns H, Wener L.Theor Appl Fract Mech, 1986; 6: 11
[29] Zhu M L, Xuan F Z, Zhu K L, Wang G Z, Jia T Y.Acta Metall Sin, 2009; 45: 320
[29] (朱明亮, 轩福贞, 朱奎龙, 王国珍, 贾天耀. 金属学报, 2009; 45: 320)
[30] Abareshi M, Emadoddin E.Mater Sci Eng, 2011; A32: 5099
[31] Richman R H, Landgraf R W.Metall Trans, 1975; 6A: 955
[32] Nakagawa H, Miyazaki T.J Mater Sci, 1999; 34: 3901
[33] Parker E R.Metall Trans, 1977; 8A: 1025
[34] Huang W G, Fang H S, Zheng Y K.Acta Metall Sin, 2001; 37: 927
[34] (黄维刚, 方鸿生, 郑燕康. 金属学报, 2001; 37: 927)
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[5] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[6] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[7] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[8] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[9] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[10] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[11] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[12] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[13] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[14] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[15] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.