Please wait a minute...
金属学报  2016, Vol. 52 Issue (2): 224-232    DOI: 10.11900/0412.1961.2015.00280
  论文 本期目录 | 过刊浏览 |
低合金多相钢中残余奥氏体对塑性和韧性的影响*
谢振家,尚成嘉(),周文浩,吴彬彬
北京科技大学材料科学与工程学院, 北京 100083
EFFECT OF RETAINED AUSTENITE ON DUCTILITY AND TOUGHNESS OF A LOW ALLOYED MULTI-PHASE STEEL
Zhenjia XIE,Chengjia SHANG(),Wenhao ZHOU,Binbin WU
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

谢振家,尚成嘉,周文浩,吴彬彬. 低合金多相钢中残余奥氏体对塑性和韧性的影响*[J]. 金属学报, 2016, 52(2): 224-232.
Zhenjia XIE, Chengjia SHANG, Wenhao ZHOU, Binbin WU. EFFECT OF RETAINED AUSTENITE ON DUCTILITY AND TOUGHNESS OF A LOW ALLOYED MULTI-PHASE STEEL[J]. Acta Metall Sin, 2016, 52(2): 224-232.

全文: PDF(11581 KB)   HTML
摘要: 

研究了经临界退火和不同温度回火后多相组织低合金钢中残余奥氏体对塑性和韧性的影响. 结果表明, 实验钢经两相区临界退火和不同温度回火后, 获得了临界铁素体、回火马氏体/贝氏体以及体积分数分别为2%, 5%, 10%的残余奥氏体多相组织. 含有不同体积分数残余奥氏体的多相组织钢强度差异不大, 其屈服强度介于540~590 MPa, 抗拉强度介于720~780 MPa. 残余奥氏体含量对塑性和韧性影响显著. 随着残余奥氏体含量的增加, 实验钢的均匀延伸率和断后延伸率分别从10.3%和23.8%提高到20.4%和33.8%. 塑性的提高主要是由于残余奥氏体在拉伸过程中逐步发生马氏体相变, 从而提供持续的加工硬化能力, 推迟颈缩的发生. 残余奥氏体对韧性的改善随着冲击测试温度的降低变得更加显著. 冲击温度高于-60 ℃时, 不同体积分数的残余奥氏体实验钢的冲击功均在120 J以上, 当冲击实验温度为-80 ℃时, 残余奥氏体含量仅2%的实验钢的冲击韧性仅14 J, 而含有残余奥氏体体积分数约10%的实验钢在-80和-100 ℃的冲击功仍然保持在60~80 J. 残余奥氏体的存在有利于提高低温冲击过程中的塑性变形能力, 延迟起裂, 提高起裂功, 从而有利于获得优异的低温冲击韧性.

关键词 多相钢残余奥氏体塑性低温韧性    
Abstract

High performance steels require not only high strength, but also the combination of high ductility, high toughness and good weldability. Retained austenite in multi-phase steels has been widely reported to be helpful for obtaining high strength, high ductility and high toughness. In this work, steel with multi-phase microstructure consisting of intercritical ferrite, tempered martensite/bainite and different volume fractions retained austenite was obtained by intercritical annealing and tempering at 600~680 ℃. The volume fractions of retained austenite were 2%, 5%, 10% for samples tempered at 600, 650 and 680 ℃, respectively. The effect of retained austenite on ductility and toughness was studied in detail. Results showed that there was no obvious change in strength by varying the volume fraction of retained austenite, yield strength of the steel was 540~590 MPa, tensile strength was 720~780 MPa. Retained austenite could largely improve both the ductility and toughness of the steel. With increasing the volume fraction of retained austenite from 2% to 10%, the uniform elongation and total elongation were enhanced from 10.3% and 23.8% to 20.4% and 33.8%, respectively. The underlying reason for the improvement of ductility was attributed to the transformation induced plasticity of retained austenite by providing sustainable high work hardening rate. The improvement of toughness by retained austenite became more obvious when testing temperature was lower. When impact test temperature was higher than -60 ℃, the Charpy impact energy of samples with 2%~10% retained austenite were larger than 120 J. When test temperature was -80 ℃, Charpy impact energy of sample with 2% retained austenite decreased to 14 J, while that of sample with 10% retained austenite remained as 60~80 J when test temperature was as low as -80 and -100 ℃. Results from instrument impact test indicated that retained austenite was helpful for enhancing plasticity before crack initiation at low temperature, leading to improvement of crack initiation energy, resulting in excellent low temperature toughness.

Key wordsmulti-phase steel    retained austenite    ductility    low temperature toughness
收稿日期: 2015-05-27     
基金资助:* 国家重点基础研究发展计划资助项目 2010CB630801
图1  实验钢经不同阶段热处理后的SEM像
图2  实验钢经不同温度回火后的EBSD像
图3  实验钢经不同温度回火后的XRD谱
图4  经680 ℃回火后实验钢中残余奥氏体的TEM明场、暗场像及SAED花样
Sample σs / MPa σb / MPa Au / % A / % Ev / J
-40 ℃ -80 ℃
T600 596 746 10.3 23.8 133 14
T650 590 720 16.0 31.8 142 30
T680 541 783 20.4 33.8 122 65
表1  不同温度回火后实验钢的力学性能
图5  实验钢经600和680 ℃回火后在不同温度下的冲击功
图6  实验钢经不同温度回火后在-80 ℃冲击后的断口形貌
图7  实验钢经不同温度回火后瞬时加工硬化指数-真应变(n*-ε)曲线
图8  实验钢经600和680 ℃回火后在-80 ℃的示波冲击位移-载荷和位移-吸收能量曲线
图9  实验钢经680 ℃回火后在-80 ℃冲击后的EBSD像
[1] Weng Y Q, Yang C F, Shang C J.Iron Steel, 2011; (9): 1
[1] (翁宇庆, 杨才福, 尚成嘉. 钢铁, 2011; (9): 1)
[2] Wang X M, Shang C J, Yang S W.Acta Metall Sin, 2005; 41: 1256
[2] (王学敏, 尚成嘉, 杨善武. 金属学报, 2005; 41: 1256)
[3] Wang X M, Shang C J, Yang S W, He X L, Liu X Y. Mater Sci Eng, 2006; A438-440: 162
[4] Shu W, Wang X M, Li S R, He X L.Acta Metal Sin, 2011; 47: 435
[4] (舒玮, 王学敏, 李书瑞, 贺信莱. 金属学报, 2011; 47: 435)
[5] Sakuma Y, Matsumura O, Takechi H.Metall Mater Trans, 1991; 22A: 489
[6] Herrera C, Ponge D, Raabe D.Acta Mater, 2011; 59: 4653
[7] Zhou W H, Guo H, Xie Z J, Wang X M, Shang C J.Mater Sci Eng, 2013; A587: 365
[8] Zackay V F, Parker E R, Fahr D, Busch R.ASM Trans Quart, 1967; 60: 252
[9] Allaina S, Chateau J P, Bouaziz O. Mater Sci Eng, 2004; A387-389: 143
[10] Bouaziza O, Allain S, Scott C P, Cugy P, Barbier D.Curr Opin Solid State Mater Sci, 2011; 15(4): 141
[11] Lei M, Guo Y Y.Acta Metall Sin (Engl Lett), 1989; 2: 244
[12] Fultz B, Kim J I, Kim Y H, Kim H J, Fior G O, Morris J W Jr.Metall Trans, 1985; 16A: 2237
[13] Xu L S, Yu W, Zhang Y M, Lu X J.J Univ Sci Technol Beijing, 2012; 34: 125
[13] (徐立善, 余伟, 张烨铭, 卢小节. 北京科技大学学报, 2012; 34: 125)
[14] Xie Z J, Yuan S F, Zhou W H, Yang J R, Guo H, Shang C J.Mater Des, 2014; 59: 193
[15] You Y, Shang C J, Chen L, Subramanian S.Mater Sci Eng, 2012; A546: 111
[16] Santofimia M J, Nguyen-Minh T, Zhao L, Petrovb R, Sabirovd I, Sietsmab J.Mater Sci Eng, 2010; A527: 6429
[17] Jacques P, Delannay F, Cornet X, Harlet P, Ladriere J.Metall Mater Trans, 1998; 29A: 2383
[18] Colla V, DeSanctis M, Dimatteo A, Lovicu G, Solina A, Valentini R.Metall Mater Trans, 2009; 40A: 2557
[19] Shi J, Sun X J, Wang M Q, Hui W J, Dong H, Cao W Q.Scr Mater, 2010; 63: 815
[20] Ren Y Q, Xie Z J, Zhang H W, Yuan S F, Song T T, Shang C J.Acta Metall Sin, 2013; 49: 1558
[20] (任勇强, 谢振家, 张宏伟, 袁胜福, 宋婷婷, 尚成嘉. 金属学报, 2013; 49: 1558)
[21] Wang Y, Zhang K, Guo Z H, Chen N L, Rong Y H.Acta Metall Sin, 2012; 48: 641
[21] (王颖, 张柯, 郭正洪, 陈乃录, 戎咏华. 金属学报, 2012; 48: 641)
[22] Xie Z J, Ren Y Q, Zhou W H, Yang J R, Shang C J, Misra R D K.Mater Sci Eng, 2014; A603: 69
[23] Brophy G R, Miller A J.Trans ASM, 1949; 41: 1185
[24] Tamate O.Int J Fract Mech, 1968; 4: 257
[25] Rack H J, Kalish D.Metall Trans, 1971; 2: 3011
[26] Ahlquist C N.Acta Metall, 1975; 23: 239
[27] Syn C K, Fultz B, Morris J W Jr.Metall Trans, 1978; 9A: 1735
[28] Fultz B, Morris J W Jr.Metall Trans, 1985; 16A: 173
[29] Antolovich S D, Singh B.Metall Trans, 1971; 2: 2135
[30] Lai G Y, Wood W E, Clark R A, Zackay V F, Parker E R.Metall Trans, 1974; 5: 1663
[31] Kim K J, Schwartz L H.Mater Sci Eng, 1978; 33: 5
[32] Kang J, Wang C, Wang G D.Mater Sci Eng, 2012; A553: 96
[33] Santofimia M J, Zhao L, Sietsmab J.Metall Mater Trans, 2009; 40A: 46
[34] Cullity B D.Elements of X-ray Diffraction. Massachusetts: Addison-Wesley, 1978: 359
[1] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[3] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[4] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[5] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[6] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[7] 李民, 李昊泽, 王继杰, 马颖澈, 刘奎. 稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响[J]. 金属学报, 2022, 58(5): 637-648.
[8] 高钰璧, 丁雨田, 李海峰, 董洪标, 张瑞尧, 李军, 罗全顺. 变形速率对GH3625合金弹-塑性变形行为的影响[J]. 金属学报, 2022, 58(5): 695-708.
[9] 张新房, 向思奇, 易坤, 郭敬东. 脉冲电流调控金属固体中的残余应力[J]. 金属学报, 2022, 58(5): 581-598.
[10] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.
[11] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[12] 周成, 赵坦, 叶其斌, 田勇, 王昭东, 高秀华. 回火温度对1000 MPaNiCrMoV低碳合金钢微观组织和低温韧性的影响[J]. 金属学报, 2022, 58(12): 1557-1569.
[13] 郭昊函, 杨杰, 刘芳, 卢荣生. GH4169合金拘束相关的疲劳裂纹萌生寿命[J]. 金属学报, 2022, 58(12): 1633-1644.
[14] 武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化[J]. 金属学报, 2022, 58(11): 1349-1359.
[15] 孙士杰, 田艳中, 张哲峰. 析出强化Fe53Mn15Ni15Cr10Al4Ti2C1 高熵合金强韧化机制[J]. 金属学报, 2022, 58(1): 54-66.