Please wait a minute...
金属学报  2018, Vol. 54 Issue (1): 21-30    DOI: 10.11900/.0412.1961.2017.00129
  本期目录 | 过刊浏览 |
奥氏体化温度对中碳淬火-配分钢干滑动摩擦磨损性能的影响
杨继兰1, 蒋元凯1, 顾剑锋1, 郭正洪1(), 陈海龑2
1 上海交通大学材料科学与工程学院 上海 200240
2 上海海事大学海洋科学与工程学院 上海 201306
Effect of Austenitization Temperature on the Dry Sliding Wear Properties of a Medium Carbon Quenching and Partitioning Steel
Jilan YANG1, Yuankai JIANG1, Jianfeng GU1, Zhenghong GUO1(), Haiyan CHEN2
1 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2 College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
引用本文:

杨继兰, 蒋元凯, 顾剑锋, 郭正洪, 陈海龑. 奥氏体化温度对中碳淬火-配分钢干滑动摩擦磨损性能的影响[J]. 金属学报, 2018, 54(1): 21-30.
Jilan YANG, Yuankai JIANG, Jianfeng GU, Zhenghong GUO, Haiyan CHEN. Effect of Austenitization Temperature on the Dry Sliding Wear Properties of a Medium Carbon Quenching and Partitioning Steel[J]. Acta Metall Sin, 2018, 54(1): 21-30.

全文: PDF(1307 KB)   HTML
摘要: 

以传统的淬火-回火试样作对比,研究了3种奥氏体化温度处理后淬火-配分中碳Fe-0.4C-1.5Mn-1.5Si钢试样的干滑动摩擦磨损性能。结果表明,860和1000 ℃全奥氏体化处理的2种淬火-配分试样中残余奥氏体的含量相近(体积分数分别约为14.37%和13.79%),其内的C浓度较高(质量分数分别为1.37%和1.38%),机械稳定性较强。在恒定低载荷(50 N)和恒定低滑动速率 (40 mm/s)条件下,摩擦过程中不易诱发马氏体相变,导致2种试样的耐摩擦磨损性能均很低。受显微组织细化影响,奥氏体化温度较低的试样具有更高的耐磨性。当奥氏体化温度降低到800 ℃时,获得临界淬火-配分试样。显微组织分析表明,该试样中不仅包含少量的铁素体(体积分数约6.75%),而且存在最高含量的残余奥氏体(体积分数约22.28%),使得在4组试样内的显微硬度最低。但由于低的C浓度(质量分数约1.06%),残余奥氏体的机械稳定性较弱,在摩擦过程中易诱发马氏体相变,不仅贡献额外的硬化,而且马氏体相变体积膨胀引起的材料表面层压应力对提高耐磨性也有利,由此导致临界淬火-配分试样表现出最好的耐磨损性能。因此,在给定的摩擦参数条件下,残余奥氏体对马氏体钢耐磨性的影响主要决定于其在摩擦过程中是否能经相变而引起附加的硬化作用。

关键词 中碳淬火-配分钢干滑动摩擦摩擦磨损残余奥氏体马氏体相变    
Abstract

The quenching and partitioning (Q&P) process is a promising method to create novel martensitic steels with improved balance of strength and ductility by retaining considerable amount of austenite in martensitic matrix. This kind of microstructure provides suitable condition to study wear and abrasion mechanism since the effect of retained austenite on the wear property of martensitic steel is still controversial by now. Selecting traditional quenching and tempering (Q&T) sample with identical composition Fe-0.4C-1.5Mn-1.5Si as reference, the dry sliding wear property of Q&P samples with different austenitization temperatures was studied. The results show that the volume fraction of retained austenite in Q&P samples with full austenitization at 860 or 1000 °C respectively is nearly the same (about 14.37% in the former and about 13.79% in the later), and the corresponding carbon concentration (mass fraction) in retained austenite is relatively high (1.37% in the former and 1.38% in the later). Under the conditions of low loading (50 N) and slide speed (40 mm/s), it is not easy to induce martensitic transformation because of very strong mechanical stability, leading to the low friction and wear resistance of samples. The slight better wear resistance of samples with low austenitization temperature can be attributed to microstructural refinement. When the austenitization temperature was 800 ℃, the intercritical Q&P samples were obtained. Microstructure analysis indicates there exist the highest volume fraction of retained austenite (about 22.28%) and a small volume fraction of ferrite (about 6.75%) in martensitic matrix, which results in the lowest microhardness among present four kinds of samples. However, the mechanical stability of retained austenite in this kind of sample is weak due to the low carbon concentration (about 1.06%). The obvious martensitic transformation accompanying sliding wear contributes to extra hardening and provides additional compressive stress on the touching surface caused by volume expansion. Therefore, the intercritical Q&P samples exhibit the best wear resistance. Based on the experimental results, it is true that the mechanical stability instead of the amount of retained austenite in martensitic steel plays a critical role in improving wear resistance.

Key wordsmedium carbon quenching and partitioning steel    dry sliding wear wear and abrasion    retained austenite    martensitic transformation
收稿日期: 2017-04-14     
ZTFLH:  TG706  
基金资助:国家自然科学基金项目No.51071101
作者简介:

作者简介 杨继兰,女,1987年生,博士

图1  4个试样的OM像
图2  摩擦磨损实验前后试样的XRD谱
Specimen Before / HV After / HV
Q&T 860 546 527
Q&P 800 334 419
Q&P 860 452 434
Q&P 1000 449 420
表1  摩擦磨损实验前后试样的显微硬度
  
Specimen μ V / mm3
Q&T 860 0.77 3.61×10-2
Q&P 800 0.79 2.90×10-2
Q&P 860 0.57 7.95×10-2
Q&P 1000 0.55 10.51×10-2
表2  试样的摩擦磨损性能
图4  4组试样的表面磨痕形貌图及EDS谱
图5  4组试样磨损实验后磨面的显微组织特征
图6  Q&P 800试样磨损前后的TEM像和SAED谱
[1] Speer J G, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation[J]. Acta Mater., 2003, 51: 2611
[2] Santofimia M J, Nguyen-Minh T, Zhao L, et al.New low carbon Q&P steels containing film-like intercritical ferrite[J]. Mater. Sci. Eng., 2010, A527: 6429
[3] Santofimia M J, Zhao L, Petrov R, et al.Microstructural development during the quenching and partitioning process in a newly designed low-carbon steel[J]. Acta Mater., 2011, 59: 6059
[4] Wang L, Speer J G.Quenching and partitioning steel heat treatment[J]. Metall. Microstruct. Anal., 2013, 2: 268
[5] Zhao C, Tang D, Jiang H T, et al.Process simulation and microstructure analysis of low carbon Si-Mn quenched and partitioned steel[J]. J. Iron Steel Res. Int., 2008, 15: 82
[6] Speer J G,Rizzo Assun??o F C R,Matlock D K,et al. The "quenching and partitioning" process: Background and recent progress[J]. Mater. Res., 2005, 8: 417
[7] Zhang K, Xu W Z, Guo Z H, et al.Effects of novel Q-P-T and traditional Q-T processes on the microstructure and mechanical properties of martensitic steels with different carbon content[J]. Acta Metall. Sin., 2011, 47: 489(张珂, 许为宗, 郭正洪等. 新型Q-P-T和传统Q-T工艺对不同C含量马氏体钢组织和力学性能的影响[J]. 金属学报, 2011, 47: 489)
[8] Weng Y Q, Dong H, Gan Y.Advanced Steels [M]. Beijing: Metallurgical Industry Press, 2011: 67
[9] Wang C Y, Shi J, Liu S, et al.Study on three-body impact-abrasion of steel treated by quenching-partitioning-tempering process[J]. Chin. J. Mater. Res., 2009, 23: 305(王存宇, 时捷, 刘苏等. 淬火-配分-回火工艺处理钢的三体冲击磨损性能研究[J]. 材料研究学报, 2009, 23: 305)
[10] Liu S G, Dong S S, Yang F, et al.Application of quenching-partitioning-tempering process and modification to a newly designed ultrahigh carbon steel[J]. Mater. Des., 2014, 56: 37
[11] Wang C Y, Li X D, Chang Y, et al. Comparison of three-body impact abrasive wear behaviors for quenching-partitioning-tempering and quenching-tempering 20Si2Ni3 steels[J]. Wear, 2016, 362-363: 121
[12] Hu F, Wu K M, Hodgson P D.Effect of retained austenite on wear resistance of nanostructured dual phase steels[J]. Mater. Sci. Technol., 2016, 32: 40
[13] Kim H J, Kweon Y G.The effects of retained austenite on dry sliding wear behavior of carburized steels[J]. Wear, 1996, 193: 8
[14] Riviére J P, Brin C, Villain J P.Structure and topography modifications of austenitic steel surfaces after friction in sliding contact[J]. Appl. Phys., 2003, 76A: 277
[15] Zandrahimi M, Bateni M R, Poladi A, et al.The formation of martensite during wear of AISI 304 stainless steel[J]. Wear, 2007, 263: 674
[16] Molinari A, Pellizzari M, Gialanella S, et al.Effect of deep cryogenic treatment on the mechanical properties of tool steels[J]. J. Mater. Proc. Technol., 2001, 118: 350
[17] Wei X C, Li J, Meng H.Tribological characteristics of HSLA TRIP steel containing meta-stable retained austenite[J]. Tribology, 2006, 26: 49(韦习成, 李健, Meng H.含亚稳残余奥氏体HSLA TRIP钢的摩擦磨损性能研究[J]. 摩擦学学报, 2006, 26: 49)
[18] Liu Y, Yu W P, Zhang J D, et al.Effect of deep cryogenic treatment on microstructure and mechanical properties of T8A steel[J]. Trans. Mater. Heat Treat., 2010, 31(10): 48(刘勇, 于文平, 张金东等. 深冷处理对T8A钢组织和力学性能的影响[J]. 材料热处理学报, 2010, 31(10): 48)
[19] Wu H Y.Study on friction-induced martensite transformation of retained austenite and its wear resistance[J]. Hot Work. Technol., 2007, 36(16): 32(吴海燕. 残余奥氏体的摩擦诱发马氏体相变行为及其耐磨特性的研究[J]. 热加工工艺, 2007, 36(16): 32)
[20] Arques J L, Prado J M.The dry wear resistance of a carbonitrided steel[J]. Wear, 1985, 103: 321
[21] Siepak J.The influence of contact stress on the wear of a carburized steel case with a high content of retained austenite[J]. Wear, 1982, 80: 301
[22] Jatczak C F.Retained Austenite and its Measurement by X-ray Diffraction [R]. SAE Technical Paper 800426. Detroit: Society of Automotive Engineers, Inc., 1980: 6
[23] Xiong Z L, Cai Q W, Jiang H T, et al.Research on mechanical stability of austenite in TRIP steels[J]. J. Mater. Eng., 2011, (3): 11(熊自柳, 蔡庆伍, 江海涛等. TRIP钢中奥氏体的力学稳定性研究[J]. 材料工程, 2011, (3): 11)
[24] Huang F, Yang J L, Guo Z H, et al.Effect of partitioning treatment on the mechanical property of Fe-0.19C-1.47Mn-1.50Si steel with refined martensitic microstructure[J]. Metall. Mater. Trans., 2016, 47A: 1072
[25] Yao Y Q.The research on friction and wear properties of low-carbon low-alloy steels [D].Nanjing: Nanjing University of Science and Technology, 2013)(姚寅群.低碳低合金钢摩擦磨损性能研究 [D]. 南京: 南京理工大学, 2013)
[26] Wang Y, Lei T Q, Liu J J.Tribo-metallographic behavior of high carbon steels in dry sliding: II. Microstructure and wear[J]. Wear, 1999, 231: 12
[27] Sun J S.Wear of Metals [M]. Beijing: Metallurgical Industry Press, 1992: 182(孙家枢. 金属的磨损 [M]. 北京: 冶金工业出版社, 1992: 182)
[28] Xu Y L, Qin H Q, Pang Z G, et al.Wear resistance at high temperature of H13 steel after RE-N-C-S-V-Nb multi-element penetrating[J]. Surf. Technol., 2015, 44(4): 60(徐永礼, 覃海泉, 庞祖高等. RE-N-C-S-V-Nb多元共渗H13钢的高温耐磨性[J]. 表面技术, 2015, 44(4): 60)
[29] Wang M S, Zhu Y F.The plastic induced martensite transformation of a medium manganese austenite steel[J].Phys. Tests. Chem. Anal. (Phys.Test.), 1991, A(1): 23(王明胜, 朱延福.奥氏体中锰钢的形变诱发马氏体[J]. 理化检验(物理分册), 1991, A(1): 23)
[30] Society of Heat Treatment,Chinese Society of Mechanical Engineers. The Friction Wear and Heat Treatment of Metals [M]. Beijing: Mechanical Industry Press, 1988: 93(中国机械工程学会热处理学会. 金属的摩擦磨损与热处理 [M]. 北京: 机械工业出版社, 1988: 93)
[1] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[2] 苗军伟, 王明亮, 张爱军, 卢一平, 王同敏, 李廷举. AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59(2): 267-276.
[3] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[4] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[5] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[6] 王文权, 杜明, 张新戈, 耿铭章. H13钢表面电火花沉积WC-Ni基金属陶瓷涂层微观组织及摩擦磨损性能[J]. 金属学报, 2021, 57(8): 1048-1056.
[7] 蒋中华, 杜军毅, 王培, 郑建能, 李殿中, 李依依. M-A岛高温回火转变产物对核电SA508-3钢冲击韧性影响机制[J]. 金属学报, 2021, 57(7): 891-902.
[8] 刘曼, 胡海江, 田俊羽, 徐光. 变形对超高强贝氏体钢组织和力学性能的影响[J]. 金属学报, 2021, 57(6): 749-756.
[9] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[10] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
[11] 赵万新, 周正, 黄杰, 杨延格, 杜开平, 贺定勇. FeCrNiMo激光熔覆层组织与摩擦磨损行为[J]. 金属学报, 2021, 57(10): 1291-1298.
[12] 肖飞, 陈宏, 金学军. 形状记忆合金弹热制冷效应的研究现状[J]. 金属学报, 2021, 57(1): 29-41.
[13] 罗海文,沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512.
[14] 王世宏,李健,葛昕,柴锋,罗小兵,杨才福,苏航. γ/ε双相Fe-19Mn合金在拉伸变形过程中的组织演变和加工硬化行为[J]. 金属学报, 2020, 56(3): 311-320.
[15] 郑晓航, 宁睿, 段佳彤, 蔡伟. Ti70-xTa15Zr15Fex (x=0.3、0.6、1.0)形状记忆合金薄膜的马氏体相变与阻尼行为[J]. 金属学报, 2020, 56(12): 1690-1696.