Please wait a minute...
金属学报  2021, Vol. 57 Issue (7): 891-902    DOI: 10.11900/0412.1961.2020.00285
  研究论文 本期目录 | 过刊浏览 |
M-A岛高温回火转变产物对核电SA508-3钢冲击韧性影响机制
蒋中华1, 杜军毅2, 王培1(), 郑建能2, 李殿中1(), 李依依1
1.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
2.二重(德阳)重型装备有限公司 德阳 618000
Mechanism of Improving the Impact Toughness of SA508-3 Steel Used for Nuclear Power by Pre-Transformation of M-A Islands
JIANG Zhonghua1, DU Junyi2, WANG Pei1(), ZHENG Jianneng2, LI Dianzhong1(), LI Yiyi1
1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.Erzhong (Deyang) Heavy Equipment Co. , Ltd. , Deyang 618000, China
引用本文:

蒋中华, 杜军毅, 王培, 郑建能, 李殿中, 李依依. M-A岛高温回火转变产物对核电SA508-3钢冲击韧性影响机制[J]. 金属学报, 2021, 57(7): 891-902.
Zhonghua JIANG, Junyi DU, Pei WANG, Jianneng ZHENG, Dianzhong LI, Yiyi LI. Mechanism of Improving the Impact Toughness of SA508-3 Steel Used for Nuclear Power by Pre-Transformation of M-A Islands[J]. Acta Metall Sin, 2021, 57(7): 891-902.

全文: PDF(15505 KB)   HTML
摘要: 

利用SEM、TEM、XRD和EBSD等微观分析手段,研究了核电SA508-3钢马氏体(M)-残余奥氏体(AR)岛(M-A岛)高温回火转变对冲击韧性的影响机制。结果表明,正火态SA508-3钢中M-A岛呈块状,以AR为主。M-A岛经650℃高温回火后,转变成铁素体和M3C碳化物组成的析出相聚集区。沿析出相聚集区边缘分布的粗大M3C易诱发裂纹萌生而发生解理断裂,导致SA508-3钢低温冲击韧性偏低。进一步研究表明,深冷或回火预处理将M-A岛转变成过渡产物,可改善正火态SA508-3钢650℃高温回火后析出相聚集区中M3C的尺寸、形态和分布,进而在一定程度上提高了SA508-3钢低温冲击韧性,其中400℃预回火处理效果最佳。这是由于,经400℃预回火后,M-A岛中AR将完全转变成细小的贝氏体,其内部具有高密度板条亚结构和渗碳体,为M3C在析出相聚集区内均匀析出提供形核点;同时,400℃预回火也减少了M-A岛边缘位错密度和相变残余应力,避免了650℃高温回火过程中M3C在原块状M-A岛边缘形核和迅速长大,有利于M3C在析出相聚集区内均匀弥散分布。

关键词 核电SA508-3钢残余奥氏体冲击韧性M-A岛粒状贝氏体    
Abstract

SA508-3 steel is the key structural material extensively used in large components of third-generation nuclear power plants. For increasing the process efficiency of nuclear power plants, extremely thick cross-sectional heavy forgings are necessary for constructing large components for these plants. Owing to thick cross sections, the as-quenched microstructure of the center of heavy forgings is typically granular bainite, composed of bainitic ferrite and martensite (M) and retained austenite (AR) (M-A) islands. An M-A island is an undesired microstructure that results in the SA508-3 steel having a poor low-temperature impact toughness after conventional tempering at 650oC. However, it is difficult to tailor the as-quenched microstructure owing to the limited cooling rate during the quenching process. Therefore, the modification of the tempering process is a more feasible method to adjust the microstructure and improve the mechanical properties of heavy forgings. Herein, the decomposition of AR within M-A islands during different transformation paths and its effect on the mechanical properties of SA508-3 steel have been investigated. The results show that clusters of ferrite and agglomerated M3C carbides are formed during conventional tempering at 650oC. These coarse M3C carbides decorate the boundary of the cluster, reducing the impact toughness of the SA508-3 steel. Accordingly, the size and distribution of these M3C carbides are tentatively modified by introducing pretreatments at different temperatures before conventional tempering at 650oC. This modification is because, during pretreatments, AR first decomposes into various transitional microstructures such as martensite, bainite, or pearlite, which further transform into clusters of ferrite and M3C carbides during tempering at 650oC. The results show that 400oC is the optimal pretempering temperature to improve the impact toughness of SA508-3 steel. Microstructural observations reveal that during tempering at 400oC, AR completely decomposes into fine bainite comprising bainitic packets and high-density cementite particles. This provides additional nucleation sites for M3C carbides inside the clusters during the subsequent tempering at 650°C, avoiding the formation of coarse M3C carbides distributed along these cluster boundaries.

Key wordsnuclear power    SA508-3 steel    retained austenite    impact toughness    M-A island    granular bainite
收稿日期: 2020-08-05     
ZTFLH:  TG161  
基金资助:工业强基工程项目(TC190A4DA/35);中国科学院青年促进会项目(Y201732);辽宁振兴人才计划项目(XLYC1807022);沈阳材料科学国家研究中心青年人才项目(L2019F48)
作者简介: 王 培,pwang@imr.ac.cn,主要从事高性能特殊钢材料研制.
蒋中华,男,1989年生,博士.
图1  核电SA508-3钢热处理工艺示意图
图2  正火态SA508-3钢OM和SEM像
图3  粒状贝氏体M-A岛中合金元素分布的EPMA测量
图4  SA508-3钢正火态显微组织(a) EBSD image quality map showing the different phases (BF—bainitic ferrite in grey, AR in red, M in dark grey)(b) TEM bright-field image of blocky AR island and corresponding selected area electron diffraction (SAED) pattern (inset)(c) TEM bright-field image from region 1 in Fig.4b(d) TEM bright-field image of twined M island and SAED pattern (inset)
图5  正火态SA508-3钢经不同预处理后XRD谱
图6  SA508-3钢正火态试样经不同预处理后SEM像
图7  正火态SA508-3钢试样经不同预处理后TEM像和SAED花样
图8  正火态SA508-3钢经400℃预回火后试样EBSD分析
图9  不同预处理试样经650℃高温回火后SEM像
图10  不同预处理温度下SA508-3钢-60℃冲击韧性和显微硬度
图11  SA508-3钢-60℃冲击断口形貌和断口侧剖面SEM像(a-c) the samples subjected to tranditional tempering (d-f) modified tempering by pre-tempering at 400oC
图12  粒状贝氏体中块状残余奥氏体回火转变机制示意图
1 Luo Y, Peng J M, Wang H B, et al. Effect of tempering on microstructure and mechanical properties of a non-quenched bainitic steel [J]. Mater. Sci. Eng., 2010, A527: 3433
2 Liu D Y, Bai B Z, Fang H S, et al. Effect of tempering temperature and carbide free bainite on the mechanical characteristics of a high strength low alloy steel [J]. Mater. Sci. Eng., 2004, A371: 40
3 Li X D, Shang C J, Han C C, et al. Influence of necklace-type M-A constituent on impact toughness and fracture mechanism in the heat affected zone of X100 pipeline steel [J]. Acta Metall. Sin., 2016, 52: 1025
3 李学达, 尚成嘉, 韩昌柴等. X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响 [J]. 金属学报, 2016, 52: 1025
4 Hrivnak I, Matsuda F, Ikeuchi K. Investigation of M-A constituent in high strength steel welds [J]. Trans. JWRI, 1992, 21: 149
5 Jiang Z H, Wang P, Li D Z, et al. Effects of tempering temperature on the microstructure and mechanical properties of granular bainite in 2.25Cr-1Mo-0.25V steel [J]. Acta Metall. Sin., 2015, 51: 925
5 蒋中华, 王 培, 李殿中等. 回火温度对2.25Cr-1Mo-0.25V钢粒状贝氏体显微组织和力学性能的影响 [J]. 金属学报, 2015, 51: 925
6 Lambert A, Drillet J, Gourgues A F, et al. Microstructure of martensite-austenite constituents in heat affected zones of high strength low alloy steel welds in relation to toughness properties [J]. Sci. Technol. Weld. Joining, 2000, 5: 168
7 Verrier P, Maurickx T, Taillard R, et al. Effect of the H.A.Z. microstructure on the fracture toughness of offshore microalloyed structural steels [J]. Offshore Mech. Arctic Eng., 1989, 3: 641
8 Li Y, Baker T N. Effect of morphology of martensite-austenite phase on fracture of weld heat affected zone in vanadium and niobium microalloyed steels [J]. Mater. Sci. Technol., 2010, 26: 1029
9 Zhao J. Interrelation of strength-toughness and retained austenite stability in granular bainite [J]. Mater. Mech. Eng., 1994, 18(5): 12
9 赵 捷. 粒状贝氏体中残余奥氏体稳定性与强韧性关系 [J]. 机械工程材料, 1994, 18(5): 12
10 Lee S, Kim S, Hwang B, et al. Effect of carbide distribution on the fracture toughness in the transition temperature region of an SA 508 steel [J]. Acta Mater., 2002, 50: 4755
11 Mayer S. Correlation between heat treatment, microstructure and mechanical properties of a hot-work tool steel [D]. Leoben: University of Leoben, 2009
12 Li Z J, Xiao N M, Li D Z, et al. Effect of microstructure evolution on strength and impact toughness of G18CrMo2-6 heat-resistant steel during tempering [J]. Mater. Sci. Eng., 2014, A604: 103
13 Jiang Z H, Wang P, Li D Z, et al. Effects of rare earth on microstructure and impact toughness of low alloy Cr-Mo-V steels for hydrogenation reactor vessels [J]. J. Mater. Sci. Technol., 2020, 45: 1
14 Rehan M A, Medvedeva A, Svensson L E, et al. Retained austenite transformation during heat treatment of a 5 Wt Pct Cr cold work tool steel [J]. Metall. Mater. Trans., 2017, 48A: 5233
15 Sasaguri N, Mutaguchi T, Yokomizo Y, et al. Decomposition behavior of retained austenite of high chromium white cast iron [J]. J. Jpn. Found. Eng. Soc., 2004, 76: 198
16 Caballero F G, Miller M K, Garcia-Mateo C, et al. Redistribution of alloying elements during tempering of a nanocrystalline steel [J]. Acta Mater., 2008, 56: 188
17 Primig S, Leitner H. Separation of overlapping retained austenite decomposition and cementite precipitation reactions during tempering of martensitic steel by means of thermal analysis [J]. Thermochim. Acta, 2011, 526: 111
18 Lerchbacher C, Zinner S, Leitner H. Direct or indirect: Influence of type of retained austenite decomposition during tempering on the toughness of a hot-work tool steel [J]. Mater. Sci. Eng., 2013, A564: 163
19 Jiang Z H, Wang P, Li D Z, et al. Influence of the decomposition behavior of retained austenite during tempering on the mechanical properties of 2.25Cr-1Mo-0.25 V steel [J]. Mater. Sci. Eng., 2019, A742: 540
20 Li Y H, Jiang Z H, Yang Z D, et al. Effect of indirect transformation of retained austenite during tempering on the Charpy impact toughness of a low-alloy Cr-Mo-V steel [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 1346
21 Jiang Z H, Wang P, Li D Z, et al. The evolutions of microstructure and mechanical properties of 2.25Cr-1Mo-0.25V steel with different initial microstructures during tempering [J]. Mater. Sci. Eng., 2017, A699: 165
22 Andrews K W. Empirical formulae for the calculation of some transformation temperatures [J]. J. Iron Steel Inst., 1965, 203: 721
23 Xie Z J, Han G, Zhou W H, et al. Study of retained austenite and nano-scale precipitation and their effects on properties of a low alloyed multi-phase steel by the two-step intercritical treatment [J]. Mater. Charact., 2016, 113: 60
24 Park H S, Seol J B, Lim N S, et al. Study of the decomposition behavior of retained austenite and the partitioning of alloying elements during tempering in CMnSiAl TRIP steels [J]. Mater. Des., 2015, 82: 173
25 Wang J F, Yang Q, Wang X D, et al. Effect of coiling temperature on microstructure and tensile behavior of a hot-rolled ferritic lightweight steel [J]. Metall. Mater. Trans., 2016, 47A: 5918
26 Speich G R, Leslie W C. Tempering of steel [J]. Metall. Trans., 1972, 3: 1043
27 Im Y R, Oh Y J, Lee B J, et al. Effects of carbide precipitation on the strength and Charpy impact properties of low carbon Mn-Ni-Mo bainitic steels [J]. J. Nucl. Mater., 2001, 297: 138
28 Jin H H, Shin C, Kim D H, et al. Evolution of a needle shaped carbide in SA508 Gr3 steel [J]. ISIJ Int., 2008, 48: 1810
29 Chen J H, Cao R. Micromechanism of cleavage fracture of weld metals [J]. Acta Metall. Sin., 2017, 53: 1427
29 陈剑虹, 曹 睿. 焊缝金属解理断裂微观机理 [J]. 金属学报, 2016, 53: 1427
30 Love G R. Dislocation pipe diffusion [J]. Acta Metall., 1964, 12: 731
[1] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[2] 朱东明, 何江里, 史根豪, 王青峰. 热输入对Q500qE钢模拟CGHAZ微观组织和冲击韧性的影响[J]. 金属学报, 2022, 58(12): 1581-1588.
[3] 刘曼, 胡海江, 田俊羽, 徐光. 变形对超高强贝氏体钢组织和力学性能的影响[J]. 金属学报, 2021, 57(6): 749-756.
[4] 戴悦, 杨杰, 陈浩峰. 核电安全端结构中材料拘束的作用范围[J]. 金属学报, 2021, 57(12): 1645-1652.
[5] 罗海文,沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512.
[6] 田亚强,田耕,郑小平,陈连生,徐勇,张士宏. 淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性[J]. 金属学报, 2019, 55(3): 332-340.
[7] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[8] 万响亮, 胡锋, 成林, 黄刚, 张国宏, 吴开明. 两步贝氏体转变对中碳微纳结构钢韧性的影响[J]. 金属学报, 2019, 55(12): 1503-1511.
[9] 邵毅, 李彦默, 刘晨曦, 严泽生, 刘永长. 低碳铁素体不锈钢高频直缝电阻焊管退火工艺优化[J]. 金属学报, 2019, 55(11): 1367-1378.
[10] 潘栋, 赵宇光, 徐晓峰, 王艺橦, 江文强, 鞠虹. 高能瞬时电脉冲处理对42CrMo钢组织与性能的影响[J]. 金属学报, 2018, 54(9): 1245-1252.
[11] 文明月, 董文超, 庞辉勇, 陆善平. 一种Fe-Cr-Ni-Mo高强钢焊接热影响区的显微组织与冲击韧性研究[J]. 金属学报, 2018, 54(4): 501-511.
[12] 马也飞, 宋竹满, 张思倩, 陈立佳, 张广平. 小尺度CA6NM马氏体不锈钢样品疲劳性能评价研究[J]. 金属学报, 2018, 54(10): 1359-1367.
[13] 杜瑜宾, 胡小锋, 姜海昌, 闫德胜, 戎利建. 回火时间对Fe-Cr-Ni-Mo高强钢碳化物演变及力学性能的影响[J]. 金属学报, 2018, 54(1): 11-20.
[14] 胡小锋, 姜海昌, 赵明久, 闫德胜, 陆善平, 戎利建. 一种Fe-Cr-Ni-Mo高强高韧合金钢焊接接头的组织和力学性能[J]. 金属学报, 2018, 54(1): 1-10.
[15] 杨继兰, 蒋元凯, 顾剑锋, 郭正洪, 陈海龑. 奥氏体化温度对中碳淬火-配分钢干滑动摩擦磨损性能的影响[J]. 金属学报, 2018, 54(1): 21-30.