Please wait a minute...
金属学报  2019, Vol. 55 Issue (3): 332-340    DOI: 10.11900/0412.1961.2018.00270
  本期目录 | 过刊浏览 |
淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性
田亚强1,田耕1,郑小平1,陈连生1(),徐勇1,2,张士宏2
1. 华北理工大学教育部现代冶金技术重点实验室 唐山 063210
2. 中国科学院金属研究所 沈阳 110016
C and Mn Elements Characterization and Stability of Retained Austenite in Different Locations ofQuenching and Partitioning Bainite Steels
Yaqiang TIAN1,Geng TIAN1,Xiaoping ZHENG1,Liansheng CHEN1(),Yong XU1,2,Shihong ZHANG2
1. Key Laboratory of the Ministry of Education for Modern Metallurgy Technology, North China University of Science and Technology, Tangshan 063210, China
2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

田亚强,田耕,郑小平,陈连生,徐勇,张士宏. 淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性[J]. 金属学报, 2019, 55(3): 332-340.
Yaqiang TIAN, Geng TIAN, Xiaoping ZHENG, Liansheng CHEN, Yong XU, Shihong ZHANG. C and Mn Elements Characterization and Stability of Retained Austenite in Different Locations ofQuenching and Partitioning Bainite Steels[J]. Acta Metall Sin, 2019, 55(3): 332-340.

全文: PDF(18645 KB)   HTML
摘要: 

采用部分奥氏体化-两相区保温-淬火-配分(IQ&PB)热处理工艺,借助SEM、TEM、XRD研究了淬火配分贝氏体钢组织形貌及残余奥氏体特征,利用EPMA、EBSD、纳米压痕等表征了不同位置残余奥氏体中合金元素的分布情况,结合室温拉伸应力-应变曲线,研究了C、Mn元素对不同位置残余奥氏体稳定性的影响及其相变规律。结果表明,淬火贝氏体钢室温组织中残余奥氏体以块状和薄膜状形态存在。在拉伸形变过程中,发生TRIP效应,残余奥氏体体积减小,相变优先发生在铁素体晶界,最后发生在贝氏体板条之间,C、Mn元素对残余奥氏体有稳定作用,使残余奥氏体不易发生相变。拉伸断口处应力集中,残余奥氏体完全转变为马氏体,距离断口2和4 mm处,残余奥氏体体积分数分别为3.12%和5.03%。薄膜状残余奥氏体比块状残余奥氏体稳定性更强,并且<111>γ晶向的残余奥氏体不稳定,容易向马氏体转变。

关键词 淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素分布残余奥氏体稳定性TRIP效应    
Abstract

The volume fraction and stability of retained austenite play an important role in the performance of low carbon steels, while the C and Mn elements have a stabilizing effect on the thermal stability and mechanical stability of retained austenite. Therefore, the C and Mn elementals partitioning was promoted by intercritical annealing. As a result, the mechanical properties of the low carbon steels are improved. The microstructure of quenching and partitioning bainitic steels and retained austenite characteristics were studied by means of SEM, TEM and XRD. The partitioning and content of C and Mn elements in retained austenite at different locations were characterized by EPMA, EBSD and nanoindentation. The effect of C and Mn elements on the stability of retained austenite at different locations and phase change law of retained austenite were investigated by combining the tensile stress-strain curves under the treatment of intercritical annealing (partial austenitizing)-quenching and partitioning in the bainitic region process (IQ&PB). In the process of tensile deformation, the transformation induced plasticity (TRIP) effect occurs, the volume of retained austenite decreases, the transformation takes place preferentially in the ferrite grain boundary, and finally occurs between the bainite laths. C and Mn elements have a stabilizing effect on the retained austenite, which make retained austenite is not prone to phase change. The stress at the tensile fracture is concentrated, and the retained austenite is completely transformed into martensite. The volume fraction of retained austenite is 3.12% and 5.03% at 2 mm and 4 mm distances away from the fracture. Film-like retained austenite is more stable than blocky retained austenite, and the retained austenite of the <111>γ crystal orientation is unstable and easily transforms into martensite.

Key wordsquenching and partitioning bainitic steel    retained austenite in different locations    C and Mn elements distribution    stability of retained austenite    TRIP effect
收稿日期: 2018-06-25     
ZTFLH:  TG142.4  
基金资助:国家自然科学基金项目(51574107);河北省自然科学基金项目(E2017209048)
作者简介: 田亚强,男,1980年生,教授,博士
图1  试样两相区保温-淬火-贝氏体区配分(IQ&PB)热处理工艺流程示意图
图2  距离断口2和4 mm处纳米压痕标记位置
图3  IQ&PB工艺处理后试样的SEM像
图4  IQ&PB工艺处理后残余奥氏体的TEM像、SAED花样及C和Mn元素含量变化
图5  IQ&PB工艺处理后试样中C、Mn元素分布
图6  IQ&PB工艺处理后试样的XRD谱
图7  IQ&PB处理后试样的工程应力-应变曲线和加工硬化曲线
图8  IQ&PB工艺处理后试样距离拉伸断口不同位置的XRD谱
图9  淬火配分贝氏体钢拉伸试样距离断口不同位置的EBSD像
图10  C、Mn在距离断口4 mm处的EPMA像
图11  距离断口4和2 mm处奥氏体晶粒取向图
[1] Zhou S, Zhang K, Wang Y, et al. High strength-elongation product of Nb-microalloyed low-carbon steel by a novel quenching-partitioning-tempering process [J]. Mater. Sci. Eng., 2011, A528: 8006
[2] Tirumalasetty G K, Van Huis M A, Kwakernaak C, et al. Deformation-induced austenite grain rotation and transformation in TRIP-assisted steel [J]. Acta Mater., 2012, 60: 1311
[3] Li W J, Cai M Y, Wang D, et al. Studying on tempering transformation and internal friction for low carbon bainitic steel [J]. Mater. Sci. Eng., 2017, A679: 410
[4] Dan W J, Li S H, Zhang W G, et al. The effect of strain-induced martensitic transformation on mechanical properties of TRIP steel [J]. Mater. Des., 2008, 29: 604
[5] Wang H S, Yuan G, Zhang Y X, et al. Microstructural evolution and mechanical properties of duplex TRIP steel produced by strip casting [J]. Mater. Sci. Eng., 2017, A692: 703
[6] Yan S, Liu X H, Liu W J, et al. Comparison on mechanical properties and microstructure of a C-Mn-Si steel treated by quenching and partitioning (Q&P) and quenching and tempering (Q&T) processes [J]. Mater. Sci. Eng., 2015, A620: 58
[7] Jirková H, Ma?ek B, Wagner M F X, et al. Influence of metastable retained austenite on macro and micromechanical properties of steel processed by the Q&P process [J]. J. Alloys Compd., 2014, 615(Suppl.1): S163
[8] Hajyakbary F, Sietsma J, Miyamoto G, et al. Interaction of carbon partitioning, carbide precipitation and bainite formation during the Q&P process in a low C steel [J]. Acta Mater., 2016, 104: 72
[9] Wang X D, Huang B X, Rong Y H, et al. Microstructures and stability of retained austenite in TRIP steels [J]. Mater. Sci. Eng., 2006, A438-440: 300
[10] Shen Y F, Qiu L N, Sun X, et al. Effects of retained austenite volume fraction, morphology, and carbon content on strength and ductility of nanostructured TRIP-assisted steels [J]. Mater. Sci. Eng., 2015, A636: 551
[11] Jimenez-Melero E, Van Dijk N H, Zhao L. Martensitic transformation of individual grains in low-alloyed TRIP steels [J]. Scr. Mater., 2007, 56: 421
[12] Blondé R, Jimenez-Melero E, Zhao L, et al. High-energy X-ray diffraction study on the temperature-dependent mechanical stability of retained austenite in low-alloyed TRIP steels [J]. Acta Mater., 2012, 60: 565
[13] Zou Y, Xu Y B, Hu Z P, et al. Austenite stability and its effect on the toughness of a high strength ultra-low carbon medium manganese steel plate [J]. Mater. Sci. Eng., 2016, A675: 153
[14] Chen J, Lv M Y, Liu Z Y, et al. Combination of ductility and toughness by the design of fine ferrite/tempered martensite-austenite microstructure in a low carbon medium manganese alloyed steel plate [J]. Mater. Sci. Eng., 2015, A648: 51
[15] Cai Z H, Ding H, Misra R D K, et al. Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content [J]. Acta Mater., 2015, 84: 229
[16] Li Y J, Li X L, Yuan G, et al. Microstructure and partitioning behavior characteristics in low carbon steels treated by hot-rolling direct quenching and dynamical partitioning processes [J]. Mater Charact., 2016, 121: 157
[17] Tian Y Q, Zhang H J, Chen L S, et al. Comprehensive effect of C, Mn partitioning behavior on retained austenite of low carbon Si-Mn steel in I&Q&P process [J].J. Mater. Eng., 2016, 44(4): 32
[17] 田亚强, 张宏军, 陈连生等. 低碳硅锰钢I&Q&P处理中C, Mn元素配分综合作用 [J]. 材料工程, 2016, 44(4): 32
[18] Chen L S, Zhang J Y, Tian Y Q, et al. Effect of Mn pre-partitioning on C partitioning and retained austenite of Q&P steels [J]. Acta Metall. Sin., 2015, 51: 527
[18] 陈连生, 张健杨, 田亚强等. 预先Mn配分处理对Q&P钢中C配分及残余奥氏体的影响 [J]. 金属学报, 2015, 51: 527
[19] Edmonds D V, He K, Rizzo F C, et al. Quenching and partitioning martensite—A novel steel heat treatment [J]. Mater. Sci. Eng., 2006, A438: 25
[20] Van Der Zwaag S, Zhao LE, Kruijver S O, et al. Thermal and mechanical stability of retained austenite in aluminum-containing multiphase TRIP steels [J]. ISIJ Int., 2002, 42: 1565
[21] Sun S J, Pugh M. Manganese partitioning in dual-phase steel during annealing [J]. Mater. Sci. Eng., 2000, A276: 167
[22] Chiang J, Lawrence B, Boyd J D, et al. Effect of microstructure on retained austenite stability and work hardening of TRIP steels [J]. Mater. Sci. Eng., 2011, A528: 4516
[23] Xiong X C, Chen B, Huang M X, et al. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel [J]. Scr. Mater., 2013, 68: 321
[24] Fischer F D, Reisner G, Werner E, et al. A new view on transformation induced plasticity (TRIP) [J]. Int. J. Plast., 2000, 16: 723
[25] Knijf D D, Petrov R, F?jer C, et al. Effect of fresh martensite on the stability of retained austenite in quenching and partitioning steel [J]. Mater. Sci. Eng., 2014, A615: 107
[26] Dai Y J, Li B, Ma H E, et al. Influence of carbon on the stacking fault energy and deformation mechanics of Fe-Mn-C system alloys [J]. Appl. Mech. Mater., 2015, 710: 9
[27] Song C H, Yu H, Li L L, et al. Effect of carbon at interface of austenite on manganese segregation of low carbon and manganese steel [J]. Mater Lett., 2016, 174: 75
[28] Yang P, Liu T Y, Lu F Y, et al. Orientation dependence of martensitic transformation in high Mn TRIP/TWIP steels [J]. Steel Res. Int., 2012, 83: 368
[29] Chumlyakov Y, Panchenko E, Kireeva I, et al. Orientation dependence and tension/compression asymmetry of shape memory effect and superelasticity in ferromagnetic Co40Ni33Al27, Co49Ni21Ga30 and Ni54Fe19Ga27 single crystals [J]. Mater. Sci. Eng., 2008, A481-482: 95
[1] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[2] 金淼, 李文权, 郝硕, 梅瑞雪, 李娜, 陈雷. 固溶温度对Mn-N型双相不锈钢拉伸变形行为的影响[J]. 金属学报, 2019, 55(4): 436-444.
[3] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[4] 陈雷, 郝硕, 邹宗园, 韩舒婷, 张荣强, 郭宝峰. TRIP型双相不锈钢Fe-19.6Cr-2Ni-2.9Mn-1.6Si在循环变形条件下的力学特性[J]. 金属学报, 2019, 55(12): 1495-1502.
[5] 陈雷, 郝硕, 梅瑞雪, 贾伟, 李文权, 郭宝峰. 节约型双相不锈钢TRIP效应致塑性增量及其固溶温度依赖性[J]. 金属学报, 2019, 55(11): 1359-1366.
[6] 朱恺, 伍翠兰, 谢盼, 韩梅, 刘元瑞, 张香阁, 陈江华. 奥氏体/铁素体层状条带结构高锰钢的微观组织及其性能[J]. 金属学报, 2018, 54(10): 1387-1398.
[7] 任勇强 谢振家 尚成嘉. 低碳钢中残余奥氏体的调控及对力学性能的影响[J]. 金属学报, 2012, 48(9): 1074-1080.
[8] 鲁法云 杨平 孟利 毛卫民. 18Mn TRIP钢温变形过程中马氏体逆相变行为[J]. 金属学报, 2010, 46(10): 1153-1160.
[9] 张维娜 刘振宇 王国栋. 高锰TRIP钢的形变诱导马氏体相变及加工硬化行为[J]. 金属学报, 2010, 46(10): 1230-1236.