|
|
淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性 |
田亚强1,田耕1,郑小平1,陈连生1(),徐勇1,2,张士宏2 |
1. 华北理工大学教育部现代冶金技术重点实验室 唐山 063210 2. 中国科学院金属研究所 沈阳 110016 |
|
C and Mn Elements Characterization and Stability of Retained Austenite in Different Locations ofQuenching and Partitioning Bainite Steels |
Yaqiang TIAN1,Geng TIAN1,Xiaoping ZHENG1,Liansheng CHEN1(),Yong XU1,2,Shihong ZHANG2 |
1. Key Laboratory of the Ministry of Education for Modern Metallurgy Technology, North China University of Science and Technology, Tangshan 063210, China 2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
田亚强,田耕,郑小平,陈连生,徐勇,张士宏. 淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性[J]. 金属学报, 2019, 55(3): 332-340.
Yaqiang TIAN,
Geng TIAN,
Xiaoping ZHENG,
Liansheng CHEN,
Yong XU,
Shihong ZHANG.
C and Mn Elements Characterization and Stability of Retained Austenite in Different Locations ofQuenching and Partitioning Bainite Steels[J]. Acta Metall Sin, 2019, 55(3): 332-340.
[1] | Zhou S, Zhang K, Wang Y, et al. High strength-elongation product of Nb-microalloyed low-carbon steel by a novel quenching-partitioning-tempering process [J]. Mater. Sci. Eng., 2011, A528: 8006 | [2] | Tirumalasetty G K, Van Huis M A, Kwakernaak C, et al. Deformation-induced austenite grain rotation and transformation in TRIP-assisted steel [J]. Acta Mater., 2012, 60: 1311 | [3] | Li W J, Cai M Y, Wang D, et al. Studying on tempering transformation and internal friction for low carbon bainitic steel [J]. Mater. Sci. Eng., 2017, A679: 410 | [4] | Dan W J, Li S H, Zhang W G, et al. The effect of strain-induced martensitic transformation on mechanical properties of TRIP steel [J]. Mater. Des., 2008, 29: 604 | [5] | Wang H S, Yuan G, Zhang Y X, et al. Microstructural evolution and mechanical properties of duplex TRIP steel produced by strip casting [J]. Mater. Sci. Eng., 2017, A692: 703 | [6] | Yan S, Liu X H, Liu W J, et al. Comparison on mechanical properties and microstructure of a C-Mn-Si steel treated by quenching and partitioning (Q&P) and quenching and tempering (Q&T) processes [J]. Mater. Sci. Eng., 2015, A620: 58 | [7] | Jirková H, Ma?ek B, Wagner M F X, et al. Influence of metastable retained austenite on macro and micromechanical properties of steel processed by the Q&P process [J]. J. Alloys Compd., 2014, 615(Suppl.1): S163 | [8] | Hajyakbary F, Sietsma J, Miyamoto G, et al. Interaction of carbon partitioning, carbide precipitation and bainite formation during the Q&P process in a low C steel [J]. Acta Mater., 2016, 104: 72 | [9] | Wang X D, Huang B X, Rong Y H, et al. Microstructures and stability of retained austenite in TRIP steels [J]. Mater. Sci. Eng., 2006, A438-440: 300 | [10] | Shen Y F, Qiu L N, Sun X, et al. Effects of retained austenite volume fraction, morphology, and carbon content on strength and ductility of nanostructured TRIP-assisted steels [J]. Mater. Sci. Eng., 2015, A636: 551 | [11] | Jimenez-Melero E, Van Dijk N H, Zhao L. Martensitic transformation of individual grains in low-alloyed TRIP steels [J]. Scr. Mater., 2007, 56: 421 | [12] | Blondé R, Jimenez-Melero E, Zhao L, et al. High-energy X-ray diffraction study on the temperature-dependent mechanical stability of retained austenite in low-alloyed TRIP steels [J]. Acta Mater., 2012, 60: 565 | [13] | Zou Y, Xu Y B, Hu Z P, et al. Austenite stability and its effect on the toughness of a high strength ultra-low carbon medium manganese steel plate [J]. Mater. Sci. Eng., 2016, A675: 153 | [14] | Chen J, Lv M Y, Liu Z Y, et al. Combination of ductility and toughness by the design of fine ferrite/tempered martensite-austenite microstructure in a low carbon medium manganese alloyed steel plate [J]. Mater. Sci. Eng., 2015, A648: 51 | [15] | Cai Z H, Ding H, Misra R D K, et al. Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content [J]. Acta Mater., 2015, 84: 229 | [16] | Li Y J, Li X L, Yuan G, et al. Microstructure and partitioning behavior characteristics in low carbon steels treated by hot-rolling direct quenching and dynamical partitioning processes [J]. Mater Charact., 2016, 121: 157 | [17] | Tian Y Q, Zhang H J, Chen L S, et al. Comprehensive effect of C, Mn partitioning behavior on retained austenite of low carbon Si-Mn steel in I&Q&P process [J].J. Mater. Eng., 2016, 44(4): 32 | [17] | 田亚强, 张宏军, 陈连生等. 低碳硅锰钢I&Q&P处理中C, Mn元素配分综合作用 [J]. 材料工程, 2016, 44(4): 32 | [18] | Chen L S, Zhang J Y, Tian Y Q, et al. Effect of Mn pre-partitioning on C partitioning and retained austenite of Q&P steels [J]. Acta Metall. Sin., 2015, 51: 527 | [18] | 陈连生, 张健杨, 田亚强等. 预先Mn配分处理对Q&P钢中C配分及残余奥氏体的影响 [J]. 金属学报, 2015, 51: 527 | [19] | Edmonds D V, He K, Rizzo F C, et al. Quenching and partitioning martensite—A novel steel heat treatment [J]. Mater. Sci. Eng., 2006, A438: 25 | [20] | Van Der Zwaag S, Zhao LE, Kruijver S O, et al. Thermal and mechanical stability of retained austenite in aluminum-containing multiphase TRIP steels [J]. ISIJ Int., 2002, 42: 1565 | [21] | Sun S J, Pugh M. Manganese partitioning in dual-phase steel during annealing [J]. Mater. Sci. Eng., 2000, A276: 167 | [22] | Chiang J, Lawrence B, Boyd J D, et al. Effect of microstructure on retained austenite stability and work hardening of TRIP steels [J]. Mater. Sci. Eng., 2011, A528: 4516 | [23] | Xiong X C, Chen B, Huang M X, et al. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel [J]. Scr. Mater., 2013, 68: 321 | [24] | Fischer F D, Reisner G, Werner E, et al. A new view on transformation induced plasticity (TRIP) [J]. Int. J. Plast., 2000, 16: 723 | [25] | Knijf D D, Petrov R, F?jer C, et al. Effect of fresh martensite on the stability of retained austenite in quenching and partitioning steel [J]. Mater. Sci. Eng., 2014, A615: 107 | [26] | Dai Y J, Li B, Ma H E, et al. Influence of carbon on the stacking fault energy and deformation mechanics of Fe-Mn-C system alloys [J]. Appl. Mech. Mater., 2015, 710: 9 | [27] | Song C H, Yu H, Li L L, et al. Effect of carbon at interface of austenite on manganese segregation of low carbon and manganese steel [J]. Mater Lett., 2016, 174: 75 | [28] | Yang P, Liu T Y, Lu F Y, et al. Orientation dependence of martensitic transformation in high Mn TRIP/TWIP steels [J]. Steel Res. Int., 2012, 83: 368 | [29] | Chumlyakov Y, Panchenko E, Kireeva I, et al. Orientation dependence and tension/compression asymmetry of shape memory effect and superelasticity in ferromagnetic Co40Ni33Al27, Co49Ni21Ga30 and Ni54Fe19Ga27 single crystals [J]. Mater. Sci. Eng., 2008, A481-482: 95 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|