Please wait a minute...
金属学报  2012, Vol. 48 Issue (1): 56-62    DOI: 10.3724/SP.J.1037.2011.00458
  论文 本期目录 | 过刊浏览 |
时效对Ti-50.8Ni-0.3Cr形状记忆合金组织和超弹性的影响
贺志荣, 王启, 邵大伟
陕西理工学院材料科学与工程学院, 汉中 723003
EFFECT OF AGING ON MICROSTRUCTURE AND SUPERELASTICITY IN Ti-50.8Ni-0.3Cr SHAPE MEMORY ALLOY
HE Zhirong, WANG Qi, SHAO Dawei
School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723003
引用本文:

贺志荣 王启 邵大伟. 时效对Ti-50.8Ni-0.3Cr形状记忆合金组织和超弹性的影响[J]. 金属学报, 2012, 48(1): 56-62.
, , . EFFECT OF AGING ON MICROSTRUCTURE AND SUPERELASTICITY IN Ti-50.8Ni-0.3Cr SHAPE MEMORY ALLOY[J]. Acta Metall Sin, 2012, 48(1): 56-62.

全文: PDF(1618 KB)  
摘要: 利用TEM和拉伸实验研究了时效工艺对Ti-50.8Ni-0.3Cr(原子分数, %)形状记忆合金(SMA)显微组织和超弹性的影响. 随时效时间($t_{\rm ag}$)延长, 300 ℃时效态Ti-50.8Ni-0.3Cr SMA的Ti3Ni4析出相呈细小颗粒状, 400 ℃时效态合金的析出相由颗粒状逐渐变为针状, 500 ℃时效态合金的析出相由针状逐渐变为粗片状. 时效温度对析出相形态的影响比tag显著. 随tag延长, 300和400 ℃时效态合金的抗拉强度(σb)先增大后趋于稳定, σb(500 ℃)先减小后趋于稳定, 且σb(400 ℃)>σb(300 ℃)>σb(500℃). 300和400 ℃时效态合金的超弹性优于500 ℃时效态合金. 随tag延长, 该合金的应力诱发马氏体相变临界应力逐渐减小, 300 ℃时效态合金的超弹性能耗(ΔW)降低, 400 ℃时效态合金的ΔW升高, 500 ℃时效态合金的ΔW先升高后降低.
关键词 Ti-50.8Ni-0.3Cr合金形状记忆合金时效显微组织超弹性    
Abstract:The low temperature superelastic alloys are of wide range of applications, such as to make the energy storage devices, the earthquake protective devices and the abrasion parts, etc. The shape memory alloy (SMA) Ti-50.8Ni-0.3Cr (atomic fraction, \%) is a good low temperature superelastic alloy with low martensitic transformation temperature and high critical stress for inducing martensitic transformation. So far, the effects of the annealing and aging processes on the transformation behaviors of Ti-50.8Ni-0.3Cr SMA, and the characteristics of the shape memory effect, the superelasticity and the stress-strain cycle for annealed Ti-50.8Ni-0.3Cr SMA have been studied, systematically, while the microstructure and deformation characteristics of aged Ti-50.8Ni-0.3Cr SMA were not studied yet. In this paper, the influences of aging processes on the microstructure and superelasticity in Ti-50.8Ni-0.3Cr SMA were investigated using TEM and tensile test. With increasing aging time (tag), the morphology of Ti3Ni4 precipitate shows fine particle-shape in 300 ℃ aged Ti-50.8Ni-0.3Cr SMA, the morphology of Ti3Ni4 precipitate changes from the fine particle-shape to the needle-shape in 400 ℃ aged alloy, and the morphology of Ti3Ni4 precipitate  changes from the needle-shape to the plate-shape in 500 ℃ aged alloy. The effect of aging temperature on the precipitate morphology is more outstanding than that of aging time. With increasing tag, the tensile strengths (σb) in 300 and 400 ℃ aged alloys are increase first and then tend to stable, while σb (500 ℃) is decrease first and then tend to stable, and σb(400 ℃)>σb(300 ℃)>σb(500 ℃). The superelasticities of 300 and 400 ℃ aged alloys are better than that of 500 ℃ aged alloy. With increasing tag, the critical stress for inducing martensitic transformation of Ti-50.8Ni-0.3Cr SMA is decrease, the superelasticity energy dissipation (ΔW) of 300 ℃ aged alloy is decrease, the $\Delta W$ of 400 ℃ aged alloy is increase, and the ΔW of 500 ℃ aged alloy is increase first and then decrease.
Key wordsTi-50.8Ni-0.3Cr alloy    shape memory alloy    aging    microstructure    superelasticity
收稿日期: 2011-07-18     
ZTFLH: 

TG113.25

 
基金资助:

陕西省自然科学基金项目2009JM6010和陕西省教育厅科研计划项目09JK375资助

作者简介: 贺志荣, 男, 1960年生, 教授, 博士
[1] Otsuka K, Wayman C M. Shape Memory Materials. Cambridge: Cambridge University Press, 1998: 49

[2] Kireeva I V, Chumlyakov Y I, Zakharova E G, Karaman I. J Phys TV, 2004; 115: 175

[3] Seyyed Aghamiri S M, Nili Ahmadabadi M, Raygan S, Haririan I, Ahmad Akhondi M S. J Mater Eng Perform, 2009; 18: 834

[4] Chen X, Song K J, Sun L L. Noise Vib Control, 2003; 23(2): 14

(陈欣, 宋孔杰, 孙玲玲. 噪声与振动控制, 2003; 23(2): 14)

[5] He Z R, Zhou J E. Acta Metall Sin, 2003; 39: 617

(贺志荣, 周敬恩. 金属学报, 2003; 39: 617)

[6] Jiang F, Liu Y, Yang H, Li L, Zheng Y. Acta Mater, 2009; 57: 4773

[7] Huang B M, Cai W, Zhao W, Zhao L C. Aerosp Mater Technol, 1997; 27(5): 24

(黄兵民, 蔡伟, 赵 蔚, 赵连城. 宇航材料工艺, 1997; 27(5): 24)

[8] Nayan N, Buravalla V, Ramamurty U. Mater Sci Eng, 2009; A525: 60

[9] Jiao Y Q, Wen Y H, Li N, He J Q, Teng J. Trans Nonferrous Met Soc China, 2009; 19: 616

[10] Liu Y, He Z R, Wang F, Yang J. Rare Met Mater Eng, 2011; 40: 1412

(刘艳, 贺志荣, 王芳, 杨军. 稀有金属材料与工程, 2011; 40: 1412)

[11] Hosoda H, Wakashima K, Miyazaki S, Inoue K. Mater Res Soc Symp Proc, 2005; 842: 353

[12] He Z, Liu M. Mater Sci Eng, 2011; A528: 6993

[13] Yang J, He Z R, Wang F, Wang Y S. Trans Mater Heat Treat, 2011; 32(2): 43

(杨军, 贺志荣, 王芳, 王永善. 材料热处理学报, 2011; 32(2): 43)

[14] He Z R, Wang F. Acta Metall Sin, 2008; 44: 23

(贺志荣, 王芳. 金属学报, 2008; 44: 23)

[15] Uchil J, Kumara K G, Mahesh K K. J Alloys Compd, 2001; 325: 210

[16] He Z R, Wang F, Wang Y S, Xia P J, Yang B. Acta Metall Sin, 2007; 43: 1293

(贺志荣, 王芳, 王永善, 夏鹏举, 杨 波. 金属学报, 2007; 43: 1293)

[17] Holec D, Bojda O, Dlouhy A. Mater Sci Eng, 2008; A481– 482: 462

[18] Zhou N, Shen C, Wagner M F X, Eggeler G, Mills M J, Wang Y. Acta Mater, 2010; 58: 6685

[19] Cao S, Nishida M, Schryvers D. Acta Mater, 2011; 59: 1780

[20] Frenzel J, George E P, Dlouhy A, Somsen C M, Wagner F, Eggeler X G. Acta Mater, 2010; 58: 3444

[21] Knalil–Allafi J, Dlouhy A, Eggeler G. Acta Mater, 2002; 50: 4255

[22] He Z R, Wang F. Acta Metall Sin, 2010; 46: 329

(贺志荣, 王 芳. 金属学报, 2010; 46: 329)

[23] He Z R. Acta Metall Sin, 2008; 44: 1076

(贺志荣. 金属学报, 2008; 44: 1076)

[24] Wang Q, He Z R, Wang Y S, Yang J. Acta Metall Sin, 2010; 46: 800

(王启, 贺志荣, 王永善, 杨军. 金属学报, 2010; 46: 800)

[25] Yang J, He Z R, Wang F, Wang Y S. Acta Metall Sin, 2011; 47: 157

(杨 军, 贺志荣, 王芳, 王永善. 金属学报, 2011; 47: 157)

[26] Olson G B, Cohen M J. J Less-Common Met, 1972; 28: 107
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[5] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[6] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[7] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[8] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[9] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[10] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[11] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[12] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[13] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[14] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[15] 巩向鹏, 伍翠兰, 罗世芳, 沈若涵, 鄢俊. 自然时效对Al-2.95Cu-1.55Li-0.57Mg-0.18Zr合金160℃人工时效的影响[J]. 金属学报, 2023, 59(11): 1428-1438.