Please wait a minute...
金属学报  2012, Vol. 48 Issue (1): 56-62    DOI: 10.3724/SP.J.1037.2011.00458
  论文 本期目录 | 过刊浏览 |
时效对Ti-50.8Ni-0.3Cr形状记忆合金组织和超弹性的影响
贺志荣, 王启, 邵大伟
陕西理工学院材料科学与工程学院, 汉中 723003
EFFECT OF AGING ON MICROSTRUCTURE AND SUPERELASTICITY IN Ti-50.8Ni-0.3Cr SHAPE MEMORY ALLOY
HE Zhirong, WANG Qi, SHAO Dawei
School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723003
全文: PDF(1618 KB)  
摘要: 利用TEM和拉伸实验研究了时效工艺对Ti-50.8Ni-0.3Cr(原子分数, %)形状记忆合金(SMA)显微组织和超弹性的影响. 随时效时间($t_{\rm ag}$)延长, 300 ℃时效态Ti-50.8Ni-0.3Cr SMA的Ti3Ni4析出相呈细小颗粒状, 400 ℃时效态合金的析出相由颗粒状逐渐变为针状, 500 ℃时效态合金的析出相由针状逐渐变为粗片状. 时效温度对析出相形态的影响比tag显著. 随tag延长, 300和400 ℃时效态合金的抗拉强度(σb)先增大后趋于稳定, σb(500 ℃)先减小后趋于稳定, 且σb(400 ℃)>σb(300 ℃)>σb(500℃). 300和400 ℃时效态合金的超弹性优于500 ℃时效态合金. 随tag延长, 该合金的应力诱发马氏体相变临界应力逐渐减小, 300 ℃时效态合金的超弹性能耗(ΔW)降低, 400 ℃时效态合金的ΔW升高, 500 ℃时效态合金的ΔW先升高后降低.
关键词 Ti-50.8Ni-0.3Cr合金形状记忆合金时效显微组织超弹性    
Abstract:The low temperature superelastic alloys are of wide range of applications, such as to make the energy storage devices, the earthquake protective devices and the abrasion parts, etc. The shape memory alloy (SMA) Ti-50.8Ni-0.3Cr (atomic fraction, \%) is a good low temperature superelastic alloy with low martensitic transformation temperature and high critical stress for inducing martensitic transformation. So far, the effects of the annealing and aging processes on the transformation behaviors of Ti-50.8Ni-0.3Cr SMA, and the characteristics of the shape memory effect, the superelasticity and the stress-strain cycle for annealed Ti-50.8Ni-0.3Cr SMA have been studied, systematically, while the microstructure and deformation characteristics of aged Ti-50.8Ni-0.3Cr SMA were not studied yet. In this paper, the influences of aging processes on the microstructure and superelasticity in Ti-50.8Ni-0.3Cr SMA were investigated using TEM and tensile test. With increasing aging time (tag), the morphology of Ti3Ni4 precipitate shows fine particle-shape in 300 ℃ aged Ti-50.8Ni-0.3Cr SMA, the morphology of Ti3Ni4 precipitate changes from the fine particle-shape to the needle-shape in 400 ℃ aged alloy, and the morphology of Ti3Ni4 precipitate  changes from the needle-shape to the plate-shape in 500 ℃ aged alloy. The effect of aging temperature on the precipitate morphology is more outstanding than that of aging time. With increasing tag, the tensile strengths (σb) in 300 and 400 ℃ aged alloys are increase first and then tend to stable, while σb (500 ℃) is decrease first and then tend to stable, and σb(400 ℃)>σb(300 ℃)>σb(500 ℃). The superelasticities of 300 and 400 ℃ aged alloys are better than that of 500 ℃ aged alloy. With increasing tag, the critical stress for inducing martensitic transformation of Ti-50.8Ni-0.3Cr SMA is decrease, the superelasticity energy dissipation (ΔW) of 300 ℃ aged alloy is decrease, the $\Delta W$ of 400 ℃ aged alloy is increase, and the ΔW of 500 ℃ aged alloy is increase first and then decrease.
Key wordsTi-50.8Ni-0.3Cr alloy    shape memory alloy    aging    microstructure    superelasticity
收稿日期: 2011-07-18     
ZTFLH: 

TG113.25

 
基金资助:

陕西省自然科学基金项目2009JM6010和陕西省教育厅科研计划项目09JK375资助

通讯作者: 贺志荣     E-mail: hezhirong01@163.com
Corresponding author: HE Zhirong     E-mail: hezhirong01@163.com
作者简介: 贺志荣, 男, 1960年生, 教授, 博士

引用本文:

贺志荣 王启 邵大伟. 时效对Ti-50.8Ni-0.3Cr形状记忆合金组织和超弹性的影响[J]. 金属学报, 2012, 48(1): 56-62.
HE Zhi-Rong, YU Qi, SHAO Tai-Wei. EFFECT OF AGING ON MICROSTRUCTURE AND SUPERELASTICITY IN Ti-50.8Ni-0.3Cr SHAPE MEMORY ALLOY. Acta Metall Sin, 2012, 48(1): 56-62.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2011.00458      或      https://www.ams.org.cn/CN/Y2012/V48/I1/56

[1] Otsuka K, Wayman C M. Shape Memory Materials. Cambridge: Cambridge University Press, 1998: 49

[2] Kireeva I V, Chumlyakov Y I, Zakharova E G, Karaman I. J Phys TV, 2004; 115: 175

[3] Seyyed Aghamiri S M, Nili Ahmadabadi M, Raygan S, Haririan I, Ahmad Akhondi M S. J Mater Eng Perform, 2009; 18: 834

[4] Chen X, Song K J, Sun L L. Noise Vib Control, 2003; 23(2): 14

(陈欣, 宋孔杰, 孙玲玲. 噪声与振动控制, 2003; 23(2): 14)

[5] He Z R, Zhou J E. Acta Metall Sin, 2003; 39: 617

(贺志荣, 周敬恩. 金属学报, 2003; 39: 617)

[6] Jiang F, Liu Y, Yang H, Li L, Zheng Y. Acta Mater, 2009; 57: 4773

[7] Huang B M, Cai W, Zhao W, Zhao L C. Aerosp Mater Technol, 1997; 27(5): 24

(黄兵民, 蔡伟, 赵 蔚, 赵连城. 宇航材料工艺, 1997; 27(5): 24)

[8] Nayan N, Buravalla V, Ramamurty U. Mater Sci Eng, 2009; A525: 60

[9] Jiao Y Q, Wen Y H, Li N, He J Q, Teng J. Trans Nonferrous Met Soc China, 2009; 19: 616

[10] Liu Y, He Z R, Wang F, Yang J. Rare Met Mater Eng, 2011; 40: 1412

(刘艳, 贺志荣, 王芳, 杨军. 稀有金属材料与工程, 2011; 40: 1412)

[11] Hosoda H, Wakashima K, Miyazaki S, Inoue K. Mater Res Soc Symp Proc, 2005; 842: 353

[12] He Z, Liu M. Mater Sci Eng, 2011; A528: 6993

[13] Yang J, He Z R, Wang F, Wang Y S. Trans Mater Heat Treat, 2011; 32(2): 43

(杨军, 贺志荣, 王芳, 王永善. 材料热处理学报, 2011; 32(2): 43)

[14] He Z R, Wang F. Acta Metall Sin, 2008; 44: 23

(贺志荣, 王芳. 金属学报, 2008; 44: 23)

[15] Uchil J, Kumara K G, Mahesh K K. J Alloys Compd, 2001; 325: 210

[16] He Z R, Wang F, Wang Y S, Xia P J, Yang B. Acta Metall Sin, 2007; 43: 1293

(贺志荣, 王芳, 王永善, 夏鹏举, 杨 波. 金属学报, 2007; 43: 1293)

[17] Holec D, Bojda O, Dlouhy A. Mater Sci Eng, 2008; A481– 482: 462

[18] Zhou N, Shen C, Wagner M F X, Eggeler G, Mills M J, Wang Y. Acta Mater, 2010; 58: 6685

[19] Cao S, Nishida M, Schryvers D. Acta Mater, 2011; 59: 1780

[20] Frenzel J, George E P, Dlouhy A, Somsen C M, Wagner F, Eggeler X G. Acta Mater, 2010; 58: 3444

[21] Knalil–Allafi J, Dlouhy A, Eggeler G. Acta Mater, 2002; 50: 4255

[22] He Z R, Wang F. Acta Metall Sin, 2010; 46: 329

(贺志荣, 王 芳. 金属学报, 2010; 46: 329)

[23] He Z R. Acta Metall Sin, 2008; 44: 1076

(贺志荣. 金属学报, 2008; 44: 1076)

[24] Wang Q, He Z R, Wang Y S, Yang J. Acta Metall Sin, 2010; 46: 800

(王启, 贺志荣, 王永善, 杨军. 金属学报, 2010; 46: 800)

[25] Yang J, He Z R, Wang F, Wang Y S. Acta Metall Sin, 2011; 47: 157

(杨 军, 贺志荣, 王芳, 王永善. 金属学报, 2011; 47: 157)

[26] Olson G B, Cohen M J. J Less-Common Met, 1972; 28: 107
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[3] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[4] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[5] 张乐,王威,M. Babar Shahzad,单以银,杨柯. 新型多层金属复合材料的制备与性能[J]. 金属学报, 2020, 56(3): 351-360.
[6] 陈翔,陈伟,赵洋,禄盛,金晓清,彭向和. 考虑塑性变形和相变耦合效应的NiTiNb记忆合金管接头装配性能模拟[J]. 金属学报, 2020, 56(3): 361-373.
[7] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[8] 肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.
[9] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[10] 谭超林,周克崧,马文有,曾德长. 激光增材制造成型马氏体时效钢研究进展[J]. 金属学报, 2020, 56(1): 36-52.
[11] 秦海龙,张瑞尧,毕中南,杜洪标,张金辉. GH4169合金圆盘时效过程残余应力的演化规律研究[J]. 金属学报, 2019, 55(8): 997-1007.
[12] 蔡超,李煬,李劲风,张昭,张鉴清. 2A97 Al-Li合金薄板时效析出与电位及晶间腐蚀的相关性研究[J]. 金属学报, 2019, 55(8): 958-966.
[13] 蓝春波,梁家能,劳远侠,谭登峰,黄春艳,莫羡忠,庞锦英. 冷轧态Ti-35Nb-2Zr-0.3O合金的异常热膨胀行为[J]. 金属学报, 2019, 55(6): 701-708.
[14] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[15] 黄森森,马英杰,张仕林,齐敏,雷家峰,宗亚平,杨锐. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019, 55(6): 741-750.