Please wait a minute...
金属学报  2012, Vol. 48 Issue (1): 63-69    DOI: 10.3724/SP.J.1037.2011.00593
  论文 本期目录 | 过刊浏览 |
气体保护熔炼条件下Mg-Gd-Y-Zr合金的夹杂物
童文辉, 王杰, 周吉学, 杨院生
中国科学院金属研究所, 沈阳 110016
INCLUSIONS IN Mg-Gd-Y-Zr ALLOY MELTING UNDER THE GAS COVERAGE
TONG Wenhui, WANG Jie, ZHOU Jixue, YANG Yuansheng
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

童文辉 王杰 周吉学 杨院生. 气体保护熔炼条件下Mg-Gd-Y-Zr合金的夹杂物[J]. 金属学报, 2012, 48(1): 63-69.
, , , . INCLUSIONS IN Mg-Gd-Y-Zr ALLOY MELTING UNDER THE GAS COVERAGE[J]. Acta Metall Sin, 2012, 48(1): 63-69.

全文: PDF(10593 KB)  
摘要: 本文研究了气体保护条件下, 常规熔铸的Mg-Gd-Y-Zr合金中夹杂物的形貌、分布及形成原因, 并通过计算分析了夹杂物的沉降行为. 结果表明, Mg-Gd-Y-Zr合金中有MgO或Y的氧化物为主的球状、簇状、不规则状、线状的复合夹杂物和含熔剂夹杂物, 夹杂物的平均尺寸为12.7 µm, 平均体积分数为0.26%. 夹杂物出现的频率随其尺寸增大而急剧减小, 尺寸在20 μm以下的夹杂物占夹杂物总体积接近85%, 尺寸在45 μm以下的夹杂物占96%. 计算结果表明, 夹杂物沉降速率与其尺寸和密度相关; 夹杂物密度增大, 可使镁合金中夹杂物的最大尺寸减小, 计算得到的合金中最大夹杂物的尺寸与实验结果基本一致.
关键词 Mg-Gd-Y-Zr合金夹杂物气体保护    
Abstract:When smelting magnesium alloy under the protected conditions, it is unavoidable completely for magnesium alloy melt to react with the atmosphere, that the loose reaction products are separated very difficultly from the alloy melt. Finally, they become the inclusions in the alloy, to deteriorate the mechanical properties and performance. In this paper, in order to evaluate the inclusions in the new-style Mg-Gd-Y-Zr alloy and find an effective method of eliminating inclusions, the morphology, size distribution, species of inclusions and their formation in the alloy smelting and casting conventionally under gas coverage are analyzed. The settling behavior of the inclusions is also analyzed by the calculations. There are complex inclusion mainly composed of Mg or Y oxide and flux inclusion with spherical, cluster, irregular and linear shape in the Mg-Gd-Y-Zr alloy. The average size and volume fraction of them are 12.7 µm and 0.26%, respectively. The frequency of the inclusions dramatically decreases with their size increasing. The volume of inclusions less than 20 µm occupies nearly 85% of the total volume of inclusions, while the percentage of inclusions less than\linebreak 45 µm is 96%. The calculations show that the settling velocity of inclusions is dependent on their size and density, and increasing the inclusion density can diminish the maximal size of the inclusions in the magnesium alloy, which the maximal size by the calculations is consistent with the experimental result.
Key wordsMg-Gd-Y-Zr alloy    inclusion    gas coverage
收稿日期: 2011-09-20     
ZTFLH: 

TF822 TG292

 
基金资助:

国家重点基础研究发展计划资助项目2007CB613705

作者简介: 童文辉, 男, 满族, 1971年生, 副研究员, 博士
[1] Lee S G, Patel G R, Gokhale A M, Sreeranganathan A, Horstemeyer M F. Scr Mater, 2005; 53(7): 851

[2] Liu G J, Wang Y, Fan Z Y. Mater Sci Eng, 2008; 472A: 251

[3] Hu B, Peng L M, Yang Y L, DingWJ. Mater Des, 2010; 31: 3901

[4] Stumphy B, Mudryk Y, Russell A, Herman D, Gschneidner K Jr. J Alloy Compd, 2008; 460: 363

[5] Yim C D, Kang N E, You B S. Met Mater Int, 2010; 16: 377

[6] Wang W W, Xu J W, Cao D F. Foundry Technol, 1991; 12(6): 15

(王薇薇, 徐介文, 曹达富. 铸造技术, 1991; 12(6): 15)

[7] Lu C, Wu G H, Cai C, Zeng K, Ding W J. Met Form Technol, 2002; 20(5): 5

(卢晨, 吴国华, 蔡超, 曾 克, 丁文江. 金属成形工艺, 2002; 20(5): 5)

[8] Liang M J, Wu G H, Ding W J, Wang W. Trans Nonferrous Met Soc China, 2011; 21: 717

[9] Wang J, Yang Y S, Tong W H. Trans Nonferrous Met Soc China, 2011; 21: 949

[10] Hu H, Luo A. JOM, 1996; 48(10): 47

[11] Eckert C E. Mod Cast, 1991; (4): 28

[12] Bakke P, Laulin J A, Provost A, Karlsen D O. In: Huglen R ed., Light Metals 1997. Orlando: Minerals, Metals & Materials Society, 1997: 1019

[13] Zhang S C, Wei B K, Lin H T. Foundry, 2003; 52: 488

(张诗昌, 魏伯康, 林汉同. 铸造, 2003; 52: 488)

[14] Zhao Y, Liu P P, Zhou H. Foundry, 2006; 55: 1085

(赵宇, 刘盼盼, 周 宏. 铸造, 2006; 55: 1085)

[15] Han Y F, Liu J R, Shen S J, Huang W D. Foundry Technol, 2006; 27: 613

(韩英芬, 刘建睿, 沈淑娟, 黄卫东. 铸造技术, 2006; 27: 613)

[16] Gao L, Chen R S, Han E H. Trans Nonferrous Met Soc China, 2011; 21: 863

[17] Wang J, Meng J, Zhang D P, Tang D X. Mater Sci Eng, 2007; A456: 78

[18] He S M, Zeng X Q, Peng L M, Guo X W, Chang J W, Ding W J. Mater Sci Forum, 2007; 546–549: 101

[19] Guo X T, Li P J, Zeng D B, Liu S X. Trans Nonferrous Met Soc China, 2004; 14: 1295

(郭旭涛, 李培杰, 曾大本, 刘树勋. 中国有色金属学报, 2004; 14: 1295)

[20] Zheng Y, Wu G H, Hou Z Q, Chen B, Wang Q L, Ding W J. Foundry, 2010; 59(1): 7

(郑韫, 吴国华, 侯正全, 陈 斌, 王其龙, 丁文江. 铸造, 2010; 59(1): 7)

[21] Li N, Liu J R, Wang S Q, Shen S J, Huang W D, Pang Y T. Foundry Technol, 2006; 27: 1133

(李娜, 刘建睿, 王栓强, 沈淑娟, 黄卫东, 逄玉台. 铸造技术, 2006; 27: 1133)

[22] Zhang J, He L J, Li P J. Foundry, 2005; 54: 665

(张军, 何良菊, 李培杰. 铸造, 2005; 54: 665)

[23] Jiang Y Y. Trans Chin Soc Agric Eng, 1996; 12(8): 12

(蒋亦元. 农业工程学报, 1996; 12(8): 12)

[24] Chen Z H, Yan H G, Chen J H, Quan Y J, Wang H M, Chen D. Magnesium Alloy. Beijing: Chemical Industry Press, 2004: 10

(陈振华, 严红革, 陈吉华, 全亚杰, 王慧敏, 陈鼎  编著. 镁合金. 北京: 化学工业出版社, 2004: 10)

[25] Mi G B, He L J, Li P J, Popel P S, Abaturov I S. Trans Nonferrous Met Soc China, 2009; 19: 1372

(弭光宝, 何良菊, 李培杰, Popel P S, Abaturov I S. 中国有色金属学报, 2009; 19: 1372)

[26] Cao Y Q. Master Thesis, Jilin University, Changchun, 2006

(曹永强. 吉林大学硕士学位论文, 长春, 2006)

[27] Li Z B. J Mater Metall, 2002; 1: 161

(李正邦. 材料与冶金学报, 2002; 1: 161)

[28] Keissling R. Non–Metallic Inclusions in Steel. London: Metals Society, 1978: 47
[1] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[2] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[3] 孙阳庭, 李一唯, 吴文博, 蒋益明, 李劲. CaMg掺杂下夹杂物对C70S6非调质钢点蚀行为的影响[J]. 金属学报, 2022, 58(7): 895-904.
[4] 刘洁, 徐乐, 史超, 杨少朋, 何肖飞, 王毛球, 时捷. 稀土Ce对非调质钢中硫化物特征及微观组织的影响[J]. 金属学报, 2022, 58(3): 365-374.
[5] 朱苗勇, 邓志银. 钢精炼过程非金属夹杂物演变与控制[J]. 金属学报, 2022, 58(1): 28-44.
[6] 孙佳孝, 杨可, 王秋雨, 季珊林, 包晔峰, 潘杰. 5356铝合金TIG电弧增材制造组织与力学性能[J]. 金属学报, 2021, 57(5): 665-674.
[7] 唐海燕, 刘锦文, 王凯民, 肖红, 李爱武, 张家泉. 连铸中间包加热技术及其冶金功能研究进展[J]. 金属学报, 2021, 57(10): 1229-1245.
[8] 周红伟, 白凤梅, 杨磊, 陈艳, 方俊飞, 张立强, 衣海龙, 何宜柱. 1100 MPa级高强钢的低周疲劳行为[J]. 金属学报, 2020, 56(7): 937-948.
[9] 孙飞龙, 耿克, 俞峰, 罗海文. 超洁净轴承钢中夹杂物与滚动接触疲劳寿命的关系[J]. 金属学报, 2020, 56(5): 693-703.
[10] 张新房, 闫龙格. 脉冲电流调控金属熔体中的非金属夹杂物[J]. 金属学报, 2020, 56(3): 257-277.
[11] 冯业飞,周晓明,邹金文,王超渊,田高峰,宋晓俊,曾维虎. 粉末高温合金中SiO2夹杂物与基体的界面反应机理及对其变形行为的影响[J]. 金属学报, 2019, 55(11): 1437-1447.
[12] 黄宇, 成国光, 谢有. 稀土Ce对钎具钢中夹杂物的改质机理研究[J]. 金属学报, 2018, 54(9): 1253-1261.
[13] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
[14] 王先飞, 熊守美. 使用SO2/Air/N2气氛作为纯Mg及 AZ91D合金的熔炼保护*[J]. 金属学报, 2014, 50(1): 32-40.
[15] 赵博,武传松,贾传宝,袁新. 水下湿法FCAW焊缝成形的数值分析[J]. 金属学报, 2013, 49(7): 797-803.