Please wait a minute...
金属学报  2010, Vol. 46 Issue (6): 657-665    DOI: 10.3724/SP.J.1037.2009.00829
  论文 本期目录 | 过刊浏览 |
高锰TRIP/TWIP钢压缩过程晶体学行为的EBSD分析 I. 相变特点、孪生及奥氏体取向的影响
杨平; 鲁法云;  孟 利; 崔凤娥
北京科技大学材料学院; 北京 100083
εCRYSTALLOGRAPHIC BEHAVIORS OF COMPRESSED HIGH MANGANESE TRIP/TWIP STEELS ANALYZED BY EBSD TECHNIQUES
I. Transformation Characteristics, Twinning and the Influence of Austenitic Orientations
YANG Ping; LU Fayun; MENG Li; CUI Feng’e
School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083
引用本文:

杨平 鲁法云 孟 利 崔凤娥. 高锰TRIP/TWIP钢压缩过程晶体学行为的EBSD分析 I. 相变特点、孪生及奥氏体取向的影响[J]. 金属学报, 2010, 46(6): 657-665.
. εCRYSTALLOGRAPHIC BEHAVIORS OF COMPRESSED HIGH MANGANESE TRIP/TWIP STEELS ANALYZED BY EBSD TECHNIQUES
I. Transformation Characteristics, Twinning and the Influence of Austenitic Orientations[J]. Acta Metall Sin, 2010, 46(6): 657-665.

全文: PDF(5371 KB)  
摘要: 

本文利用EBSD技术研究了高锰钢压缩形变过程中γ→ε→α'马氏体相变的晶体学特点, 分析了奥氏体孪生与奥氏体晶粒取向对相变的影响. 结果表明, 由于α'马氏体在2个ε变体的交叉处形成, 而ε相变区域普遍存在奥氏体形变孪晶并且ε可在孪晶界上形成, 因此孪生对相变起着重要的作用; 而孪生的难易受奥氏体取向的影响. 分析认为, 低指数的{100}, {111}和{110}奥氏体内因多变体同时孪生而比高指数取向容易促进ε变体间的交叉从而促进α'的形成; 形变使ε变体数目或新取向增多, 但小尺寸的ε难以促进$\alpha'$的形成.

关键词 高锰钢 EBSD TRIP/TWIP 马氏体相变 取向    
Abstract

The excellent combination of strength and elongation and the super work hardening behavior of high manganese TRIP/TWIP (transformation–induced plasticity/twinning–induced plasticity) steels are due to the presence of two kinds of martensitic transformations and their complicated interactions of three phases during deformation. This work investigated the crystallographic characteristics of γ →ε →α' transformation, and in particular, the effects of deformation twins and austenitic grain orientations on martensitic transformation by means of EBSD technique. Results showed that α'–martensite was triggered at the intersection of two ε-martensite variants. Deformation twins were frequently detected near ε–martensite, thus twins promoted the formation of ε–martensite and played n important role during TRIP pocess. However, twinning was affected by austenite grain orientations. It is suggested that austenitic grain orientations with low indices, such as {100}, {111} and {110}, more easily promoted the intersection of ε–variants due to the multi–twinning and thus facilitated further α′–martensite formation than those with high indices. Deformation increased the number of " variants but reduced their sizes and therefore it is difficult for the small strain–induced ε–martensites to transform into α′–martensites smoothly.

Key wordshigh manganese steel    EBSD    TRIP/TWIP    martensitic transformation    orientation
收稿日期: 2009-12-11     
基金资助:

国家自然科学基金项目50771019和高等学校博士学科点专项科研基金项目20090006110013资助

作者简介: 杨平, 男, 1959年生, 教授

[1] Frommeyer G, Br¨ux U, Neumann P. ISIJ Int, 2003; 43: 438
[2] Huang B X, Wang X D, Rong Y H, Wang L, Jin L. Mater Sci Eng, 2006; A438–440: 306
[3] Gr¨assel O, Kr¨uger L, Frommeyer G, Meyer L W. Int J Plast, 2000; 16: 1391
[4] Srivastava A K, Bhattacharjee D, Jha G, Gope N, Singh S B. Mater Sci Eng, 2007, A445–446: 549
[5] Jacques P J, Furne’mont Q, Lani F, Pardoen T, Delannay F. Acta Mater, 2007; 55: 3681
[6] Bracke L, Kestens L, Penning J. Scr Mater, 2007; 57: 385
[7] Idrissi H, Ryelandt L, Veron M, Schryvers D, Jacques P J. Scr Mater, 2009; 60: 941
[8] Tsakiris V, Edmonds D V. Mater Sci Eng, 1999; A273–275: 430
[9] Kirindi T, Dikici M. J Alloys Compd, 2006; 407: 157
[10] Kireeva I V, Chumlyakov Y I. Mater Sci Eng, 2008; A481–482: 737
[11] Meng L, Yang P, Xie Q, Ding H, Tang Z. Scr Mater, 2007; 56: 931
[12] Gey N, Petit B, Humbert M. Metall Mater Trans, 2005; 36A: 3291
[13] Kitahara H, Ueji R, Tsuji N, Minamino Y. Acta Mater, 2006; 54: 1279
[14] Kitahara H, Uejib R, Uedac M, Tsujia N, Minamino Y. Mater Charact, 2005; 54: 378
[15] Lu F Y. Master Dissertation, Univeristy of Science and Technology Beijing, 2009
(鲁法云. 北京科技大学硕士学位论文, 2009)
[16] Bracke L, Meert G, Penning J, Cooman B C De. Metall Mater Trans, 2006; 37A: 307

[1] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[2] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[3] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[4] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[5] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[6] 李民, 李昊泽, 王继杰, 马颖澈, 刘奎. 稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响[J]. 金属学报, 2022, 58(5): 637-648.
[7] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[8] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.
[9] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[10] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[11] 王玉, 胡斌, 刘星毅, 张浩, 张灏云, 官志强, 罗海文. 退火温度对含Nb高锰钢力学和阻尼性能的影响[J]. 金属学报, 2021, 57(12): 1588-1594.
[12] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
[13] 肖飞, 陈宏, 金学军. 形状记忆合金弹热制冷效应的研究现状[J]. 金属学报, 2021, 57(1): 29-41.
[14] 许占一, 沙玉辉, 张芳, 章华兵, 李国保, 储双杰, 左良. 取向硅钢二次再结晶过程中的取向选择行为[J]. 金属学报, 2020, 56(8): 1067-1074.
[15] 张小丽, 冯丽, 杨彦红, 周亦胄, 刘贵群. 二次枝晶取向对镍基高温合金晶粒竞争生长行为的影响[J]. 金属学报, 2020, 56(7): 969-978.