Please wait a minute...
金属学报  2020, Vol. 56 Issue (7): 969-978    DOI: 10.11900/0412.1961.2019.00396
  本期目录 | 过刊浏览 |
二次枝晶取向对镍基高温合金晶粒竞争生长行为的影响
张小丽1, 冯丽2, 杨彦红3, 周亦胄3, 刘贵群1()
1.北方民族大学材料科学与工程学院 银川 750021
2.沈阳职业技术学院电气工程学院 沈阳 110045
3.中国科学院金属研究所 沈阳 110016
Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys
ZHANG Xiaoli1, FENG Li2, YANG Yanhong3, ZHOU Yizhou3, LIU Guiqun1()
1. School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
2. Electrical Engineering, Shengyang Polytechnic College, Shenyang 110045, China
3. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

张小丽, 冯丽, 杨彦红, 周亦胄, 刘贵群. 二次枝晶取向对镍基高温合金晶粒竞争生长行为的影响[J]. 金属学报, 2020, 56(7): 969-978.
Xiaoli ZHANG, Li FENG, Yanhong YANG, Yizhou ZHOU, Guiqun LIU. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. Acta Metall Sin, 2020, 56(7): 969-978.

全文: PDF(3738 KB)   HTML
摘要: 

采用精密铸造法制备板状双晶和三晶试样,研究晶粒的二次枝晶取向对晶粒竞争生长的影响。结果表明,对于一次枝晶取向相同的双晶,随二次晶界角增大,晶界位置始终位于板状试样的中间,2个晶粒之间几乎不存在竞争生长。对于一次枝晶取向不同的三晶,汇聚晶粒和发散晶粒的竞争生长情况不同。在汇聚生长的情况下,择优取向枝晶与非择优取向枝晶互相阻挡,导致晶界向择优取向晶粒倾斜,这与经典的Walton-Chalmers模型不一样。并且二次取向不影响汇聚晶粒的竞争生长。在发散生长的情况下,择优取向枝晶与非择优取向枝晶都能分枝出新的枝晶,使晶界向非择优取向晶粒倾斜,这与Walton-Chalmers模型一样。此外,二次取向不影响发散晶粒的竞争生长。

关键词 镍基高温合金定向凝固晶粒竞争生长二次枝晶取向    
Abstract

Directional solidification (DS) has been widely used to produce aero-engine and gas turbine blades of nickel-based superalloys. The preferred crystallographic orientation of nickel-based superalloys is [001], so the [001] columnar-grain structure can form after DS. Due to the low Young's modulus and the elimination of transverse grain boundaries, the [001] columnar-grain structure has beneficial mechanical behavior. The competitive grain growth dominates the production of columnar grains. There are two views about competitive grain growth, which are consistent for diverging grains but not consistent for converging grains. In the case of convergence of the first view, the grain boundary (GB) was parallel to the favorably aligned dendrites, which indicates that the favorably aligned grain cannot be eliminated. For converging grains of the second view, not only the favorably aligned dendrites could block unfavorably aligned ones, but also the unfavorably aligned dendrites could block favorably aligned ones. Thus, the converging grain boundary moved from unfavorably aligned grain to favorably aligned grain. Finally, the favorably aligned grain may be eliminated. The study about the two views was carried out in the case of the same secondary orientation but did not taken into account the secondary orientation. Up to now, the literatures about the effect of secondary dendrite orientation on competitive growth is rarely and their views contradict with each other. In this work, the bi-crystal and ter-crystal plates with different secondary orientations were produced to study the influence of secondary orientation on competitive grain growth. For the bi-crystal with the same primary orientation, as the secondary GB angle increased, the GB was nearly at the middle of the plate sample, which indicated that the competitive grain growth was weak and could be neglected. For the ter-crystal with different primary orientations, not the secondary orientation but the primary orientation could obviously affect competitive grain growth. In the case of converging grains, the change of secondary dendrite orientation had no effect on the competitive growth behavior and grain growth rate; the favorably and unfavorably aligned dendrites could block each other, which disagreed with Walton-Chalmers model and in good agreement with the results of Zhou. In the case of diverging grains, the result agreed with Walton-Chalmers model and Zhou's result.

Key wordsNi-based superalloys    directional solidification    competitive grain growth    secondary orientation
收稿日期: 2019-11-20     
ZTFLH:  TG132.3,TG21  
基金资助:国家自然科学基金项目(51701210);国家自然科学基金项目(21865001);宁夏回族自治区重点研发计划项目(2019BDE03016);宁夏自然科学基金项目(2018AAC03250)
作者简介: 张小丽,女,1984年生,博士
图 1  定向凝固过程中晶粒竞争生长机制示意图
图2  籽晶放置方式示意图
Seed patternExp.[001]orientation[010]/[010]orientation

Withdrawal speed

mm·min-1

θA1 / (o)θB / (o)θA2 / (o)θA1 / (o)θB / (o)θA2 / (o)
Bi-crystal1-10-00-06
1-22
1-34
1-46
1-58
1-610
1-712
1-814
1-916
1-1018
1-1120
1-1230
1-1345
Ter-crystal2-10±117±10±10001
2-20006
3-104501
3-204506
4-1450451
4-2450456
表1  试样的结构特征和铸造条件
图3  一次枝晶取向相同时双晶的纵截面和横截面组织
图4  晶界偏离度(θGB)随二次晶界角的变化规律
图5  二次枝晶取向相同时三晶纵截面上的组织演化
图6  二次枝晶取向不同时三晶纵截面组织演化
图7  θGB随二次晶界角的变化规律
图8  定向凝固过程中枝晶的消失和再生
[1] Walton D, Chalmers B. The origin of the preferred orientation in the columnar zone of ingots [J]. Trans. AIME, 1959, 215: 447
[2] Chalmers B. Principles of Solidification [M]. New York: John Wiley and Sons, 1964: 114
[3] McLean M. Directionally Solidified Materials for High Temperature Service [M]. London: The Metals Society, 1983: 51
[4] Quested P N, McLean M. Solidification morphologies in directionally solidified superalloys [J]. Mater. Sci. Eng., 1984, A65: 171
[5] Shi Z P, Wang Z B, Wang J Q, et al. Effect of Ni interlayer on cavitation erosion resistance of NiTi cladding by tungsten inert gas (TIG) surfacing process [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 415
doi: 10.1007/s40195-019-00947-7
[6] D'Souza N, Ardakani M G, McLean M, et al. Directional and single-crystal solidification of Ni-base superalloys: Part Ι. The role of curved isotherms on grain selection [J]. Metall. Mater. Trans., 2000, 37A: 2877
[7] Ross E W, O'Hara K S. Rene' N4: A first generation single crystal turbine airfoil alloy with improved oxidation resistance, low angle boundary strength and superior long time rupture strength [A]. Superalloys 1996 (Eighth International Symposium) [C]. Warrendale, PA: TMS, 1996: 19
[8] Cetel A D, Duhl D N. Second-generation nickel-base single crystal superalloy [A]. Superalloys 1988 [C]. Warrendale, PA: TMS, 1988: 235
[9] Esaka H. Dendrite growth and spacing in succinonitrile-acetone alloys [D]. Switzerland: Ecole Polytechnique Federale de Lausanne, 1986
[10] Gandin C A, Rappaz M. Coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes [J]. Acta Metall. Mater., 1994, 42: 2233
[11] Rappaz M, Gandin C A, Desbiolles J L, et al. Prediction of grain structures in various solidification processes [J]. Metall. Mater. Trans., 1996, 27A: 695
[12] Rappaz M, Gandin C A. Probabilistic modelling of microstructure formation in solidification processes [J]. Acta Metall. Mater., 1993, 41: 345
[13] Zhou Y Z, Volek A, Green N R. Mechanism of competitive grain growth in directional solidification of a nickel-base superalloy [J]. Acta Mater., 2008, 56: 2631
[14] Zhou Y Z, Green N R. Competitive grain growth in directional solidification of a nickel-base superalloy [A]. Superalloys 2008 (Eleventh International Symposium) [C]. Warrendale, PA: TMS, 2008: 317
[15] Zhou Y Z, Volek A, Singer R F. Influence of solidification conditions on the castability of nickel-base superalloy IN792 [J]. Metall. Mater. Trans., 2005, 36A: 651
[16] Zhou Y Z, Jin T, Sun X F. Structure evolution in directionally solidified bicrystals of nickel base superalloys [J]. Acta Metall. Sin., 2010, 46: 1327
[16] (周亦胄, 金 涛, 孙晓峰. 双晶镍基高温合金定向凝固过程的结构演化 [J]. 金属学报, 2010, 46: 1327)
[17] Zhou Y Z, Sun X F. Effect of solidification rate on competitive grain growth in directional solidification of a nickel-base superalloy [J]. Sci. China Technol. Sci., 2012, 55: 1327
[18] Lu Q, Li J G, Jin T, et al. Competitive growth in bi-crystal of Ni-based superalloys during directional solidification [J]. Acta Metall. Sin., 2011, 47: 641
[18] (卢 琦, 李金国, 金 涛等. 镍基双晶高温合金定向凝固过程中的竞争生长 [J]. 金属学报, 2011, 47: 641)
[19] Meng X B, Lu Q, Zhang X L, et al. Mechanism of competitive growth during directional solidification of a nickel-base superalloy in a three-dimensional reference frame [J]. Acta Mater., 2012, 60: 3965
[20] Li J J, Wang Z J, Wang Y Q, et al. Phase-field study of competitive dendritic growth of converging grains during directional solidification [J]. Acta Mater., 2012, 60: 1478
[21] Borisov A G. Pattern formation during directional solidification of bicrystals [J]. J. Cryst. Growth, 1995, 156: 296
[22] Wang Y C, Shi J, Liu Y. Competitive grain growth and dendrite morphology evolution in selective laser melting of Inconel 718 superalloy [J]. J. Cryst. Growth, 2019, 521: 15
[23] Yang C B, Liu L, Zhao X B, et al. Competitive grain growth mechanism in three dimensions during directional solidification of a nickel-based superalloy [J]. J. Alloys Compd., 2013, 578: 577
[24] Stanford N, Djakovic A, Shollock B A, et al. Seeding of single crystal superalloys—Role of seed melt-back on casting defects [J]. Scr. Mater., 2004, 50: 159
[25] D'Souza N, Jennings P A, Yang X L, et al. Seeding of single-crystal superalloys—Role of constitutional undercooling and primary dendrite orientation on stray-grain nucleation and growth [J]. Metall. Mater. Trans., 2005, 36B: 657
[26] D'Souza N, Ardakani M G, Wagner A, et al. Morphological aspects of competitive grain growth during directional solidification of a nickel-base superalloy, CMSX4 [J]. J. Mater. Sci., 2002, 37: 481
[27] Wagner A, Shollock B A, McLean M. Grain structure development in directional solidification of nickel-base superalloys [J]. Mater. Sci. Eng., 2004, A374: 270
[28] Ardakani M G, D'Souza N, Wagner A, et al. Competitive grain growth and texture evolution during directional solidification of superalloys [A]. Superalloys 2000 [C]. Warrendale, PA: TMS, 2000: 219
[29] Zhang X L, Zhou Y Z, Jin T, et al. Effect of solidification rate on grain structure evolution during directional solidification of a Ni-based superalloy [J]. J. Mater. Sci. Technol., 2013, 29: 879
[30] Takaki T, Sakane S, Ohno M, et al. Competitive growth during directional solidification of a binary alloy with natural convection: Two-dimensional phase-field study [J]. Modell. Simul. Mater. Sci. Eng., 2019, 27: 054001
[31] Zhao X B, Liu L, Zhang J. Investigation of grain competitive growth during directional solidification of single-crystal nickel-based superalloys [J]. Appl. Phys., 2015, 120A: 793
[32] Liu Z Y, Lin M, Yu D E, et al. Dependence of competitive grain growth on secondary dendrite orientation during directional solidification of a Ni-based superalloy [J]. Metall. Mater. Trans., 2013, 44A: 5113
[33] Takaki T, Ohno M, Shibuta Y, et al. Two-dimensional phase-field study of competitive grain growth during directional solidification of polycrystalline binary alloy [J]. J. Cryst. Growth, 2016, 442: 14
[34] Hu S S, Yang W C, Cui Q W, et al. Effect of secondary dendrite orientations on competitive growth of converging dendrites of Ni-based bi-crystal superalloys [J]. Mater. Charact., 2017, 125: 152
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[3] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[4] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[6] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[7] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[10] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[11] 于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
[12] 祝国梁, 孔德成, 周文哲, 贺戬, 董安平, 疏达, 孙宝德. 选区激光熔化 γ' 相强化镍基高温合金裂纹形成机理与抗裂纹设计研究进展[J]. 金属学报, 2023, 59(1): 16-30.
[13] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[14] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[15] 朱玉平, 盛乃成, 谢君, 王振江, 荀淑玲, 于金江, 李金国, 杨林, 侯桂臣, 周亦胄, 孙晓峰. 高钨镍基高温合金K416BW相的析出行为[J]. 金属学报, 2021, 57(2): 215-223.