Please wait a minute...
金属学报  2022, Vol. 58 Issue (5): 637-648    DOI: 10.11900/0412.1961.2021.00115
  研究论文 本期目录 | 过刊浏览 |
稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响
李民1,2, 李昊泽1(), 王继杰2, 马颖澈1, 刘奎1
1.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2.沈阳航空航天大学 材料科学与工程学院 沈阳 110136
Effect of Ce on the Microstructure, High-Temperature Tensile Properties, and Fracture Mode of Strip Casting Non-Oriented 6.5%Si Electrical Steel
LI Min1,2, LI Haoze1(), WANG Jijie2, MA Yingche1, LIU Kui1
1.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.College of Materials Science and Engineering, Shenyang Areospace University, Shenyang 110136, China
引用本文:

李民, 李昊泽, 王继杰, 马颖澈, 刘奎. 稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响[J]. 金属学报, 2022, 58(5): 637-648.
Min LI, Haoze LI, Jijie WANG, Yingche MA, Kui LIU. Effect of Ce on the Microstructure, High-Temperature Tensile Properties, and Fracture Mode of Strip Casting Non-Oriented 6.5%Si Electrical Steel[J]. Acta Metall Sin, 2022, 58(5): 637-648.

全文: PDF(5672 KB)   HTML
摘要: 

研究了Ce元素对薄带连铸无取向6.5%Si钢凝固组织、有序相、高温拉伸性能和断裂模式的影响。结果表明,添加Ce可以在薄带连铸过程中形成高熔点Ce2O2.5S和Ce4O4S3,促进钢液异质形核,细化铸带凝固组织。Ce对有序相变无明显影响,铸带有序度由高至低所对应的拉伸温度分别为650、400和800℃。随拉伸温度提高,铸带的屈服强度与抗拉强度降低,断后延伸率提高。当拉伸温度高于500℃,Ce元素的钢液净化和凝固组织细化作用有助于提高晶界强度,避免沿晶断裂。铸带在拉伸过程中发生动态回复和再结晶,最终发生韧性断裂,断后延伸率得到显著提高。研究结果证实,稀土处理可以作为薄带连铸无取向6.5%Si钢增塑的一种有效途径。

关键词 无取向6.5%Si钢薄带连铸稀土塑性断口形貌    
Abstract

Non-oriented 6.5%Si electrical steel exhibits excellent high-frequency magnetic properties, such as low iron loss and near-zero magnetostriction. Moreover, the high Si content causes poor deformability due to the solution strengthening effect of Si and the resulting ordering transformations, delaying the commercial application. Strip casting is a near-net forming technology that directly produces thin strips from the melt and reduces the required rolling deformation for the fabrication of thin sheets. This technology could be a viable option for industrializing the production of non-oriented 6.5%Si electrical steel. Despite this, even in the strip casting process, this brittle material is prone to edge cracks. Thus, improving the intrinsic plasticity of strip casting non-oriented 6.5%Si electrical steel is necessary through chemical modification to eliminate the deforming defects. The effect of Ce on the ordered phase of the solidification microstructure, high-temperature tensile properties, and fracture mode of strip casting non-oriented 6.5%Si electrical steel was investigated in this work. The results showed that the addition of Ce introduced high-melting Ce2O2.5S and Ce4O4S3 during strip casting, which promoted heterogeneous nucleation and refined the solidification microstructure of the as-cast strip. The presence of Ce did not affect the ordering condition of the as-cast strip. In decreasing order, the tensile temperatures corresponding to the ordered degree of the as-cast strip were 650, 400, and 800oC. With the tensile temperature increasing, the yield and tensile strengths of the as-cast strip decreased, whereas the elongation gradually increased. When the tensile temperature exceeded 500oC, the purification and microstructure refining effects of Ce improved grain-boundary cohesion and prevented intergranular cracking. Moreover, the occurrences of dynamic recovery and recrystallization eventually made the as-cast strip doped with Ce fractured by dimples, leading to a considerably enhanced tensile ductility. According to the findings, the rare-earth treatment should be considered as an effective method for increasing the ductility of strip casting non-oriented 6.5%Si electrical steel.

Key wordsnon-oriented 6.5%Si electrical steel    strip casting    rare earth    ductility    fracture morphology
收稿日期: 2021-03-23     
ZTFLH:  TG11  
基金资助:国家自然科学基金项目(51801221)
作者简介: 李 民,男,1996年生,硕士生
SampleSiCeFe
CS16.50Bal.
CS26.50.047Bal.
表1  无取向6.5%Si钢铸带的化学成分 (mass fraction / %)
图1  薄带连铸流程及其凝固过程示意图
图2  CS1和CS2铸带显微组织的OM像
图3  CS1和CS2铸带SEM像和EPMA元素分布图
PositionFeSiCeOSCe∶O∶S
c-138.643.3719.4627.9110.621.83∶2.63∶1
c-230.012.7824.6923.6318.893.92∶3.75∶3
c-37.600.3330.2635.0626.753.39∶3.93∶3
c-412.770.8633.0729.1324.164.11∶3.65∶3
表2  图3c中CS2铸带颗粒状第二相EPMA分析结果 (atomic fraction / %)
Case[uvw]s[uvw]nd[uvw]s / nmd[uvw]n / nmθ / (o)d[uvw]s·cosθ / nmδ / %
(0001)Ce2O2.5S//(111)δ-Fe[2110]Ce2O2.5S[1¯10] δ-Fe0.39670.414600.39673.9
[101¯0]Ce2O2.5S[2¯11] δ-Fe0.68710.712800.6871
[1100]Ce2O2.5S[1¯01] δ-Fe0.39670.414600.3967
(010)Ce4O4S3//(111)δ-Fe[001]Ce4O4S3[1¯10] δ-Fe0.39580.414600.39584.6
[1¯02]Ce4O4S3[3¯12] δ-Fe1.04571.097001.0457
[100]Ce4O4S3[1¯1¯2] δ-Fe0.68510.718200.6851
表3  晶格错配度计算结果
图4  CS1和CS2铸带300~900℃的工程应力-应变曲线
图5  CS1和CS2铸带的高温拉伸性能对比
图6  CS1和CS2铸带的TEM暗场像及对应的[001]晶带轴选区电子衍射(SAED)花样
图7  CS1和CS2铸带300和400℃拉伸断口形貌的SEM像
图8  CS1和CS2铸带300和400℃拉伸断口纵剖面的OM像
图9  CS1和CS2铸带500和650℃拉伸断口形貌的SEM像
图10  CS1和CS2铸带500和650℃拉伸断口纵剖面的OM像
图11  CS1和CS2铸带700、800和900℃拉伸断口形貌的SEM像
图12  CS1和CS2铸带700、800和900℃拉伸断口纵剖面的OM像
1 Yao Y C, Sha Y H, Liu J L, et al. Texture and magnetic properties of rolled Fe-6.5wt.% Si thin sheets [J]. J. Electron. Mater., 2014, 43: 121
doi: 10.1007/s11664-013-2842-2
2 Tanaka Y, Takada Y, Abe M, et al. Magnetic properties of 6.5%Si-Fe sheet and its applications [J]. J. Magn. Magn. Mater., 1990, 83: 375
doi: 10.1016/0304-8853(90)90553-3
3 Abe M, Takada Y, Murakami T, et al. Magnetic properties of commercially produced Fe-6.5wt% Si sheet [J]. J. Mater. Eng., 1989, 11: 109
doi: 10.1007/BF02833761
4 Phway T P P, Moses A J. Magnetostriction trend of non-oriented 6.5% Si-Fe [J]. J. Magn. Magn. Mater., 2008, 320: e611
doi: 10.1016/j.jmmm.2008.04.074
5 Viala B, Degauque J, Fagot M, et al. Study of the brittle behaviour of annealed Fe-6.5wt% Si ribbons produced by planar flow casting [J]. Mater. Sci. Eng., 1996, A212: 62
6 Ouyang G Y, Chen X, Liang Y F, et al. Review of Fe-6.5 wt%Si high silicon steel—A promising soft magnetic material for sub-kHz application [J]. J. Magn. Magn. Mater., 2019, 481: 234
doi: 10.1016/j.jmmm.2019.02.089
7 Li C S, Yang C L, Cai G J, et al. Ordered phases and microhardness of Fe-6.5%Si steel sheet after hot rolling and annealing [J]. Mater. Sci. Eng., 2016, A650: 84
8 Li R, Shen Q, Zhang L M, et al. Magnetic properties of high silicon iron sheet fabricated by direct powder rolling [J]. J. Magn. Magn. Mater., 2004, 281: 135
doi: 10.1016/j.jmmm.2004.04.098
9 Fu H D, Zhang Z H, Jiang Y B, et al. Improvement of magnetic properties of an Fe-6.5wt.% Si alloy by directional solidification [J]. Mater. Lett., 2011, 65: 1416
doi: 10.1016/j.matlet.2011.02.020
10 Xie J X, Fu H D, Zhang Z H, et al. Deformation twinning feature and its effects on significant enhancement of tensile ductility in columnar-grained Fe-6.5wt.%Si alloy at intermediate temperatures [J]. Intermetallics, 2012, 23: 20
doi: 10.1016/j.intermet.2011.12.011
11 Fu H D, Zhang Z H, Jiang Y B, et al. Applying the grain orientation dependence of deformation twinning to improve the deformation properties of an Fe-6.5wt%Si alloy [J]. J. Alloys Compd., 2016, 689: 307
doi: 10.1016/j.jallcom.2016.07.319
12 Haiji H, Okada K, Hiratani T, et al. Magnetic properties and workability of 6.5%Si steel sheet [J]. J. Magn. Magn. Mater., 1996, 160: 109
doi: 10.1016/0304-8853(96)00128-X
13 Yamaji T, Abe M, Takada Y, et al. Magnetic properties and workability of 6.5% silicon steel sheet manufactured in continuous CVD siliconizing line [J]. J. Magn. Magn. Mater., 1994, 133: 187
doi: 10.1016/0304-8853(94)90521-5
14 Matsushita T, Nakayama K, Fukase H, et al. Development and commercialization of twin roll strip caster [J]. IHI Eng. Rev., 2009, 42: 1
15 Zapuskalov N. Comparison of continuous strip casting with conventional technology [J]. ISIJ Int., 2003, 43: 1115
doi: 10.2355/isijinternational.43.1115
16 Ge S, Isac M, Guthrie R I L. Progress in strip casting technologies for steel; technical developments [J]. ISIJ Int., 2013, 53: 729
doi: 10.2355/isijinternational.53.729
17 Ge S, Isac M, Guthrie R I L. Progress of strip casting technology for steel; historical developments [J]. ISIJ Int., 2012, 52: 2109
doi: 10.2355/isijinternational.52.2109
18 Liu H T, Liu Z Y, Sun Y, et al. Development of λ-fiber recrystallization texture and magnetic property in Fe-6.5wt% Si thin sheet produced by strip casting and warm rolling method [J]. Mater. Lett., 2013, 91: 150
doi: 10.1016/j.matlet.2012.09.046
19 Li H Z, Liu H T, Liu Z Y, et al. Microstructure, texture evolution and magnetic properties of strip-casting non-oriented 6.5 wt.% Si electrical steel doped with cerium [J]. Mater. Charact., 2015, 103: 101
doi: 10.1016/j.matchar.2015.03.024
20 Li H Z, Liu H T, Liu Z Y, et al. Characterization of microstructure, texture and magnetic properties in twin-roll casting high silicon non-oriented electrical steel [J]. Mater. Charact., 2014, 88: 1
doi: 10.1016/j.matchar.2013.11.014
21 Liu H T, Li H Z, Li H L, et al. Effects of rolling temperature on microstructure, texture, formability and magnetic properties in strip casting Fe-6.5 wt% Si non-oriented electrical steel [J]. J. Magn. Magn. Mater., 2015, 391: 65
doi: 10.1016/j.jmmm.2015.04.105
22 Li H Z, Liu Z Y. Tensile properties of strip casting 6.5 wt% Si steel at elevated temperatures [J]. Mater. Sci. Eng., 2015, A639: 412
23 Li H Z, Liu H T, Wang X L, et al. Effect of cerium on the as-cast microstructure and tensile ductility of the twin-roll casting Fe-6.5wt% Si alloy [J]. Mater. Lett., 2016, 165: 5
doi: 10.1016/j.matlet.2015.11.100
24 Liu H T, Liu Z Y, Qiu Y Q, et al. Characterization of the solidification structure and texture development of ferritic stainless steel produced by twin-roll strip casting [J]. Mater. Charact., 2009, 60: 79
doi: 10.1016/j.matchar.2008.06.005
25 Spinelli J E, Tosetti J P, Santos C A, et al. Microstructure and solidification thermal parameters in thin strip continuous casting of a stainless steel [J]. J. Mater. Process. Technol., 2004, 150: 255
doi: 10.1016/j.jmatprotec.2004.02.040
26 Takatani H, Gandin C A, Rappaz M. EBSD characterisation and modelling of columnar dendritic grains growing in the presence of fluid flow [J]. Acta Mater., 2000, 48: 675
doi: 10.1016/S1359-6454(99)00413-9
27 Waudby P E. Rare earth additions to steel [J]. Int. Met. Rev., 1978, 23: 74
doi: 10.1179/imr.1978.23.1.74
28 Chen X, Li Y X. Fracture toughness improvement of austempered high silicon steel by titanium, vanadium and rare earth elements modification [J]. Mater. Sci. Eng., 2007, A444: 298
29 Bramfitt B L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron [J]. Metall. Trans., 1970, 1: 1987
30 Ouyang G Y, Macziewski C R, Jensen B, et al. Effects of solidification cooling rates on microstructures and physical properties of Fe-6.5% Si alloys [J]. Acta Mater., 2021, 205: 116575
doi: 10.1016/j.actamat.2020.116575
31 Cai G J, Yang Y, Huang Y R, et al. The significance of Ce on hot compression deformation and mechanical behavior of Fe-6.9 wt%Si alloy: Decrease of order degree and transformation of dislocations [J]. Mater. Charact., 2020, 163: 110220
doi: 10.1016/j.matchar.2020.110220
32 Shi X J, Liang Y F, Liu B B, et al. Warm deformation behavior and work-softening mechanism of Fe-6.5wt.%Si alloy [J]. J. Iron Steel Res. Int., 2020, 27: 342
33 Jung H, Kim J. Influence of cooling rate on iron loss behavior in 6.5wt% grain-oriented silicon steel [J]. J. Magn. Magn. Mater., 2014, 353: 76
doi: 10.1016/j.jmmm.2013.10.004
34 Yu X, Zhang Z H, Xie J X. Microstructure, ordered structure and warm tensile ductility of Fe-6.5% Si alloy with various Ce content [J]. Acta Metall. Sin., 2017, 53: 927
34 于 宣, 张志豪, 谢建新. 不同Ce含量Fe- 6.5%Si合金的组织、有序结构和中温拉伸塑性 [J]. 金属学报, 2017, 53: 927
[1] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[2] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[3] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[4] 王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
[5] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[6] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[7] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[8] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[9] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[10] 张新房, 向思奇, 易坤, 郭敬东. 脉冲电流调控金属固体中的残余应力[J]. 金属学报, 2022, 58(5): 581-598.
[11] 高钰璧, 丁雨田, 李海峰, 董洪标, 张瑞尧, 李军, 罗全顺. 变形速率对GH3625合金弹-塑性变形行为的影响[J]. 金属学报, 2022, 58(5): 695-708.
[12] 刘洁, 徐乐, 史超, 杨少朋, 何肖飞, 王毛球, 时捷. 稀土Ce对非调质钢中硫化物特征及微观组织的影响[J]. 金属学报, 2022, 58(3): 365-374.
[13] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.
[14] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[15] 郭昊函, 杨杰, 刘芳, 卢荣生. GH4169合金拘束相关的疲劳裂纹萌生寿命[J]. 金属学报, 2022, 58(12): 1633-1644.