Please wait a minute...
金属学报  2010, Vol. 46 Issue (6): 657-665    DOI: 10.3724/SP.J.1037.2009.00829
  论文 本期目录 | 过刊浏览 |
高锰TRIP/TWIP钢压缩过程晶体学行为的EBSD分析 I. 相变特点、孪生及奥氏体取向的影响
杨平; 鲁法云;  孟 利; 崔凤娥
北京科技大学材料学院; 北京 100083
εCRYSTALLOGRAPHIC BEHAVIORS OF COMPRESSED HIGH MANGANESE TRIP/TWIP STEELS ANALYZED BY EBSD TECHNIQUES
I. Transformation Characteristics, Twinning and the Influence of Austenitic Orientations
YANG Ping; LU Fayun; MENG Li; CUI Feng’e
School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083
全文: PDF(5371 KB)  
摘要: 

本文利用EBSD技术研究了高锰钢压缩形变过程中γ→ε→α'马氏体相变的晶体学特点, 分析了奥氏体孪生与奥氏体晶粒取向对相变的影响. 结果表明, 由于α'马氏体在2个ε变体的交叉处形成, 而ε相变区域普遍存在奥氏体形变孪晶并且ε可在孪晶界上形成, 因此孪生对相变起着重要的作用; 而孪生的难易受奥氏体取向的影响. 分析认为, 低指数的{100}, {111}和{110}奥氏体内因多变体同时孪生而比高指数取向容易促进ε变体间的交叉从而促进α'的形成; 形变使ε变体数目或新取向增多, 但小尺寸的ε难以促进$\alpha'$的形成.

关键词 高锰钢 EBSD TRIP/TWIP 马氏体相变 取向    
Abstract

The excellent combination of strength and elongation and the super work hardening behavior of high manganese TRIP/TWIP (transformation–induced plasticity/twinning–induced plasticity) steels are due to the presence of two kinds of martensitic transformations and their complicated interactions of three phases during deformation. This work investigated the crystallographic characteristics of γ →ε →α' transformation, and in particular, the effects of deformation twins and austenitic grain orientations on martensitic transformation by means of EBSD technique. Results showed that α'–martensite was triggered at the intersection of two ε-martensite variants. Deformation twins were frequently detected near ε–martensite, thus twins promoted the formation of ε–martensite and played n important role during TRIP pocess. However, twinning was affected by austenite grain orientations. It is suggested that austenitic grain orientations with low indices, such as {100}, {111} and {110}, more easily promoted the intersection of ε–variants due to the multi–twinning and thus facilitated further α′–martensite formation than those with high indices. Deformation increased the number of " variants but reduced their sizes and therefore it is difficult for the small strain–induced ε–martensites to transform into α′–martensites smoothly.

Key wordshigh manganese steel    EBSD    TRIP/TWIP    martensitic transformation    orientation
收稿日期: 2009-12-11     
基金资助:

国家自然科学基金项目50771019和高等学校博士学科点专项科研基金项目20090006110013资助

通讯作者: 杨平     E-mail: yangp@mater.ustb.edu.cn
Corresponding author: YANG Ping     E-mail: yangp@mater.ustb.edu.cn
作者简介: 杨平, 男, 1959年生, 教授

引用本文:

杨平 鲁法云 孟 利 崔凤娥. 高锰TRIP/TWIP钢压缩过程晶体学行为的EBSD分析 I. 相变特点、孪生及奥氏体取向的影响[J]. 金属学报, 2010, 46(6): 657-665.
YANG Beng. εCRYSTALLOGRAPHIC BEHAVIORS OF COMPRESSED HIGH MANGANESE TRIP/TWIP STEELS ANALYZED BY EBSD TECHNIQUES
I. Transformation Characteristics, Twinning and the Influence of Austenitic Orientations. Acta Metall Sin, 2010, 46(6): 657-665.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2009.00829      或      https://www.ams.org.cn/CN/Y2010/V46/I6/657

[1] Frommeyer G, Br¨ux U, Neumann P. ISIJ Int, 2003; 43: 438
[2] Huang B X, Wang X D, Rong Y H, Wang L, Jin L. Mater Sci Eng, 2006; A438–440: 306
[3] Gr¨assel O, Kr¨uger L, Frommeyer G, Meyer L W. Int J Plast, 2000; 16: 1391
[4] Srivastava A K, Bhattacharjee D, Jha G, Gope N, Singh S B. Mater Sci Eng, 2007, A445–446: 549
[5] Jacques P J, Furne’mont Q, Lani F, Pardoen T, Delannay F. Acta Mater, 2007; 55: 3681
[6] Bracke L, Kestens L, Penning J. Scr Mater, 2007; 57: 385
[7] Idrissi H, Ryelandt L, Veron M, Schryvers D, Jacques P J. Scr Mater, 2009; 60: 941
[8] Tsakiris V, Edmonds D V. Mater Sci Eng, 1999; A273–275: 430
[9] Kirindi T, Dikici M. J Alloys Compd, 2006; 407: 157
[10] Kireeva I V, Chumlyakov Y I. Mater Sci Eng, 2008; A481–482: 737
[11] Meng L, Yang P, Xie Q, Ding H, Tang Z. Scr Mater, 2007; 56: 931
[12] Gey N, Petit B, Humbert M. Metall Mater Trans, 2005; 36A: 3291
[13] Kitahara H, Ueji R, Tsuji N, Minamino Y. Acta Mater, 2006; 54: 1279
[14] Kitahara H, Uejib R, Uedac M, Tsujia N, Minamino Y. Mater Charact, 2005; 54: 378
[15] Lu F Y. Master Dissertation, Univeristy of Science and Technology Beijing, 2009
(鲁法云. 北京科技大学硕士学位论文, 2009)
[16] Bracke L, Meert G, Penning J, Cooman B C De. Metall Mater Trans, 2006; 37A: 307

[1] 刘金来, 叶荔华, 周亦胄, 李金国, 孙晓峰. 一种单晶高温合金的弹性性能的各向异性[J]. 金属学报, 2020, 56(6): 855-862.
[2] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[3] 王世宏,李健,葛昕,柴锋,罗小兵,杨才福,苏航. γ/ε双相Fe-19Mn合金在拉伸变形过程中的组织演变和加工硬化行为[J]. 金属学报, 2020, 56(3): 311-320.
[4] 孙衡,林小娉,周兵,赵圣诗,唐琴,董允. 定向凝固Mg-xGd-0.5Y合金的微观组织及拉伸变形行为[J]. 金属学报, 2020, 56(3): 340-350.
[5] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[6] 吴翔,左秀荣,赵威威,王中洋. NM500耐磨钢拉伸过程中TiN的破碎机制[J]. 金属学报, 2020, 56(2): 129-136.
[7] 赵旭,孙元,侯星宇,张洪宇,周亦胄,丁雨田. 取向偏差对镍基单晶高温合金钎焊接头组织与力学性能的影响[J]. 金属学报, 2020, 56(2): 171-181.
[8] 胡斌,李树索,裴延玲,宫声凯,徐惠彬. <111>取向小角偏离对一种镍基单晶高温合金蠕变性能的影响[J]. 金属学报, 2019, 55(9): 1204-1210.
[9] 陈占兴,丁宏升,陈瑞润,郭景杰,傅恒志. 脉冲电流作用下TiAl合金凝固组织演变及形成机理[J]. 金属学报, 2019, 55(5): 611-618.
[10] 孙德建,刘林,黄太文,张家晨,曹凯莉,张军,苏海军,傅恒志. 镍基单晶高温合金叶片模拟件平台处的枝晶生长和取向演化[J]. 金属学报, 2019, 55(5): 619-626.
[11] 储双杰,杨勇杰,和正华,沙玉辉,左良. 基于磁畴结构交互作用的激光刻痕取向硅钢磁致伸缩系数计算[J]. 金属学报, 2019, 55(3): 362-368.
[12] 杨燕, 杨光昱, 罗时峰, 肖磊, 介万奇. Mg-14.61Gd合金的定向凝固组织及生长取向[J]. 金属学报, 2019, 55(2): 202-212.
[13] 顾晨, 杨平, 毛卫民. 轧制工艺对低牌号无取向电工钢相变退火组织、织构与磁性能的影响[J]. 金属学报, 2019, 55(2): 181-190.
[14] 谢光, 张少华, 郑伟, 张功, 申健, 卢玉章, 郝红全, 王莉, 楼琅洪, 张健. 大尺寸单晶叶片中小角度晶界的形成与演化[J]. 金属学报, 2019, 55(12): 1527-1536.
[15] 陈雷, 郝硕, 梅瑞雪, 贾伟, 李文权, 郭宝峰. 节约型双相不锈钢TRIP效应致塑性增量及其固溶温度依赖性[J]. 金属学报, 2019, 55(11): 1359-1366.