Please wait a minute...
金属学报  2010, Vol. 46 Issue (1): 104-110    
  论文 本期目录 | 过刊浏览 |
双重孔径泡沫金属材料的强度和热性能多目标优化设计
寇东鹏; 虞吉林
中国科学技术大学中科院材料力学行为和设计重点实验室; 合肥 230027
MULTI-OBJECTIVE OPTIMUM DESIGN FOR STRENGTH AND HEAT INSULATION OF METAL FOAM WITH DUAL-SIZE CELLULAR STRUCTURE
KOU Dongpeng; YU Jilin
CAS Key Laboratory of Mechanical Behavior and Design of Materials; University of Science and Technology of China; Hefei 230027
引用本文:

寇东鹏 虞吉林. 双重孔径泡沫金属材料的强度和热性能多目标优化设计[J]. 金属学报, 2010, 46(1): 104-110.
, . MULTI-OBJECTIVE OPTIMUM DESIGN FOR STRENGTH AND HEAT INSULATION OF METAL FOAM WITH DUAL-SIZE CELLULAR STRUCTURE[J]. Acta Metall Sin, 2010, 46(1): 104-110.

全文: PDF(1221 KB)  
摘要: 

对双重孔径泡沫金属稳态热传导过程进行了数值模拟, 发现相同密度下双重孔径泡沫金属导热系数高于单一孔径泡沫金属, 但随着孔径比增大, 材料导热系数减小. 通过对有限元计算结果的多项式拟合得到了目标函数, 建立了包含强度 、隔热和轻质3个目标函数的多目标优化设计数学模型, 讨论了构件质量一定的情况下双重孔径泡沫金属材料设计参数的选取,  获得了满足强度要求, 同时隔热性能最优的泡沫金属孔径比、密度和构件厚度. 泡沫金属构件隔热参数—屈服应力图表明, 作为同时满足承载和隔热要求的泡沫金属板构件, 选用双重孔径泡沫金属的构件综合性能要显著优于单一孔径泡沫金属构件.

关键词 泡沫金属强度 热性能多目标优化设计    
Abstract

Finite element simulations are performed to study the steady state heat conduction of dual--size metal foams. Simulation results reveal that for a given density, the thermal conductivity of dual-size foams is higher than that of uniform cell size foam. However, the effective thermal conductivity decreases while increasing the cell radius ratio r/R in dual-size foams. A multi-objective optimum design model considering structure strength, heat insulation and light mass requirement is developed, where the objective function is obtained through polynomial fitting of the numerical results. The model is solved by the constraint method< and the optimum cell radius ratio, density and thickness of metal foam are obtained for dual-size metal foams. A comparison of the heat insulation capacity of the dual-size metal foam to the single-size metal foam having the same mass and yield strength shows that the heat insulation capacity of the former is much higher than that of the latter. Hence the dual-size foam structure is superior to that of the uniform cell foam when both load--bearing and heat insulation capacities are required.

Key wordsmetal foam    strength    thermal property    multi-objective optimum design
收稿日期: 2009-06-22     
ZTFLH: 

TB331

 
基金资助:

国家自然科学基金项目10672156, 10532020和 90916026资助

作者简介: 寇东鹏, 男, 1982年生, 博士生

[1] Ashby M F, Evans A G, Fleck N A, Gibson L J, Hutchinson J W, Wadley H N G. Metal Foams: A Design Guide. Woburn: Butterworth–Heinemann, 2000: 113
[2] Hanssen A G, Langseth M, Hopperstad O S. Int J Mech Sci, 2001; 43: 153
[3] Chen W, Wierzbicki T. Santosa, S. Acta Mech, 2002; 153: 183

[4] Steeves C A, Fleck N A. Int J Mech Sci, 2004; 46: 561
[5] Hanssen A G, Stobener K, Rausch G, Langseth M, Keller H. Int J Crashworthiness, 2006; 11: 231
[6] Magnucka–Blandzia E, Magnucki K. Thin–Walled Struct, 2007; 45: 432
[7] Evans A G, Hutchinson J W, Ashby M F. Prog Mater Sci, 1998; 43: 171
[8] Zhu H, Sankar B V, Haftka R T, Venkataraman S, Blosser M. Struct Multidisciplinary Optimization, 2004; 28: 349
[9] Gu S, Lu T J, Evans A G. Int J Heat Mass Trans, 2001; 44: 2163
[10] Li L X, Li Y M, Hong L, Yan G R, Chen C Q, Shen S P. Adv Mech, 2008; 38: 256
(李录贤, 李跃明, 洪 \ \ 灵, 闫桂荣, 陈常青, 申胜平. 力学进展, 2008; 38: 256)

[11] Rakow J F, Waas A M. AIAA J, 2007; 45: 329
[12] Kou D P, Li J R, Yu J L, Cheng H F. Scr Mater, 2008; 59: 483
[13] Calmidi V V, Mahajan R L. J Heat Transfer–Transactions ASME, 1999; 121: 466
[14] Gibson L J, Ashby M F. Cellular Solids: Structure and Properties. 2nd ed, Cambridge: Cambridge University Press, 1997: 283
[15] Lu T J, Chen C. Acta Mater, 1999; 47: 1469
[16] Carbonell R G, Whitaker S. In: Bear J, Corapcioglu M Y eds., Fundamentals of Transport Phenomena in Porous Media. Boston: Kluwer, 1984: 123
[17] Hsu C T, Cheng P,Wong K W. ASME J Heat Trans, 1995; 117: 264
[18] ASTM. ASTM Standard Methods of Fire Tests of Building Construction and Materials. West Conshohocken, PA: ASTM, 1988: E119

[1] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[2] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[3] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[5] 沈国慧, 胡斌, 杨占兵, 罗海文. 回火温度对含 δ 铁素体高铝中锰钢力学性能和显微组织的影响[J]. 金属学报, 2022, 58(2): 165-174.
[6] 王韬, 龙弟均, 余黎明, 刘永长, 李会军, 王祖敏. 超高压烧结制备14Cr-ODS钢及微观组织与力学性能[J]. 金属学报, 2022, 58(2): 184-192.
[7] 赵永好, 毛庆忠. 纳米金属结构材料的韧化[J]. 金属学报, 2022, 58(11): 1385-1398.
[8] 侯嘉鹏, 孙朋飞, 王强, 张振军, 张哲峰. 突破强度-导电率制约关系:晶粒异构设计[J]. 金属学报, 2022, 58(11): 1467-1477.
[9] 张旭, 田谨, 薛敏涛, 江峰, 李苏植, 张博召, 丁俊, 李小平, 马恩, 丁向东, 孙军. 2000℃高温高承载的Ta-W难熔合金[J]. 金属学报, 2022, 58(10): 1253-1260.
[10] 王硕, 王俊升. Al-Li合金中 δ′/θ′/δ复合沉淀相结构演化及稳定性的第一性原理探究[J]. 金属学报, 2022, 58(10): 1325-1333.
[11] 孙士杰, 田艳中, 张哲峰. 析出强化Fe53Mn15Ni15Cr10Al4Ti2C1 高熵合金强韧化机制[J]. 金属学报, 2022, 58(1): 54-66.
[12] 李文文, 陈波, 熊华平, 尚泳来, 毛唯, 程耀永. 第二代单晶高温合金DD6高性能钎焊接头的组织及力学性能[J]. 金属学报, 2021, 57(8): 959-966.
[13] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[14] 王慧远, 夏楠, 布如宇, 王珵, 查敏, 杨治政. 低合金化高性能变形镁合金研究现状及展望[J]. 金属学报, 2021, 57(11): 1429-1437.
[15] 李吉臣, 冯迪, 夏卫生, 林高用, 张新明, 任敏文. 非等温时效对7B50铝合金组织及性能的影响[J]. 金属学报, 2020, 56(9): 1255-1264.