Please wait a minute...
金属学报  2022, Vol. 58 Issue (11): 1467-1477    DOI: 10.11900/0412.1961.2022.00222
  研究论文 本期目录 | 过刊浏览 |
突破强度-导电率制约关系:晶粒异构设计
侯嘉鹏, 孙朋飞, 王强, 张振军, 张哲峰()
中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
Breaking the Trade-Off Relation Between Strength and Electrical Conductivity: Heterogeneous Grain Design
HOU Jiapeng, SUN Pengfei, WANG Qiang, ZHANG Zhenjun, ZHANG Zhefeng()
Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

侯嘉鹏, 孙朋飞, 王强, 张振军, 张哲峰. 突破强度-导电率制约关系:晶粒异构设计[J]. 金属学报, 2022, 58(11): 1467-1477.
Jiapeng HOU, Pengfei SUN, Qiang WANG, Zhenjun ZHANG, Zhefeng ZHANG. Breaking the Trade-Off Relation Between Strength and Electrical Conductivity: Heterogeneous Grain Design[J]. Acta Metall Sin, 2022, 58(11): 1467-1477.

全文: PDF(4110 KB)   HTML
摘要: 

采用冷拉拔工艺制备了具有不同晶粒特征的工业纯Al线和工业纯Cu线,研究了晶粒对强度和导电率的影响机制。性能测试结果表明,拉拔变形后期,工业纯Al线和工业纯Cu线的强度和导电率同步提高,打破了强度和导电率传统的倒置关系。微观组织观察发现:随着拉拔变形量增大,轴向晶粒被拉长,径向晶粒逐渐细化,径向<001>织构向<111>织构转变,形成了晶粒形状异构和晶体取向异构的微观组织结构。理论分析表明:晶粒宽度和织构主要影响强度,晶粒长度主要影响导电率;提出了轴向长晶粒、径向细晶粒和径向硬取向织构是工业纯Al线和工业纯Cu线强度和导电率同步提高的根本原因。

关键词 工业纯Al线工业纯Cu线异构晶粒强度导电率    
Abstract

The trade-off relationship between the strength and the electrical conductivity has been the bottleneck restricting the development of conductive metallic materials with high strength and high electrical conductivity. In this study, commercially pure Al wires and commercially pure Cu wires with various grain characteristics were prepared by the cold-drawing process to investigate the influencing mechanisms of grain on strength and electrical conductivity. Surprisingly, the synchronous increase in strength and electrical conductivity may be achieved both for the commercially pure Al wires and commercially pure Cu wires in the later stage of cold-drawing deformation, which shatters the traditional constrictive relationship between the strength and the electrical conductivity. Additionally, the microstructure investigation demonstrates that with the increase of drawing deformation, the axial grains were lengthened, the radial grains were increasingly polished, and the radial <001> texture was transformed to <111> texture. Finally, the heterogeneous microstructures, including heterogeneous grain formation and heterogeneous crystal orientation were formed. The theoretical analysis reveals that the grain width and texture mainly influence the strength, and the grain length primarily influences the electrical conductivity. Consequently, the axial long grain, the radial fine grain, and radial hard orientation texture are proved to be the primary mechanisms causing the synchronous improvement of strength and electrical conductivity of commercially pure Al wires and commercially pure Cu wires. This suggests that the heterogeneous grain design may be considered a useful method to create conductive metallic materials with high strength and high electrical conductivity.

Key wordscommercially pure Al wire    commercially pure Cu wire    heterogeneous grain    strength    electrical conductivity
收稿日期: 2022-05-07     
ZTFLH:  TG356.4  
基金资助:国家自然科学基金项目(52001313);中国博士后科学基金项目(2019M661151)
作者简介: 侯嘉鹏,男,1991年生,博士
图1  不同拉拔变形量工业纯Al线和工业纯Cu线的强度-导电率关系曲线
图2  不同拉拔变形量工业纯Al线径向和轴向TEM像
图3  不同拉拔变形量工业纯Cu线径向和轴向TEM像
图4  不同拉拔变形量工业纯Al线径向和轴向EBSD像
图5  不同拉拔变形量工业纯Cu线径向和轴向EBSD像
图6  工业纯Al线和工业纯Cu线内晶粒宽度和晶粒长度随拉拔变形量变化规律
图7  工业纯Al线和工业纯Cu线织构体积分数与变形量的关系
图8  高强高导金属线材晶粒异构设计原理示意图
1 Hou J P, Wang Q, Yang H J, et al. Microstructure evolution and strengthening mechanisms of cold-drawn commercially pure aluminum wire [J]. Mater. Sci. Eng., 2015, A639: 103
2 Guan R G, Shen Y F, Zhao Z Y, et al. A high-strength, ductile Al-0.35Sc-0.2Zr alloy with good electrical conductivity strengthened by coherent nanosized-precipitates [J]. J. Mater. Sci. Technol., 2017, 33: 215
3 Liu L, Jiang J T, Zhang B, et al. Enhancement of strength and electrical conductivity for a dilute Al-Sc-Zr alloy via heat treatments and cold drawing [J]. J. Mater. Sci. Technol., 2019, 35: 962
doi: 10.1016/j.jmst.2018.12.023
4 Yuan W H, Liang Z Y, Zhang C Y, et al. Effects of La addition on the mechanical properties and thermal-resistant properties of Al-Mg-Si-Zr alloys based on AA 6201 [J]. Mater. Des., 2012, 34: 788
doi: 10.1016/j.matdes.2011.07.003
5 Li Y P, Xiao Z, Li Z, et al. Microstructure and properties of a novel Cu-Mg-Ca alloy with high strength and high electrical conductivity [J]. J. Alloys Compd., 2017, 723: 1162
doi: 10.1016/j.jallcom.2017.06.155
6 Ren J Q, Liang S H, Jiang Y H, et al. Research on the microstructure and properties of in situ (TiB2-TiB)/Cu composites [J]. Acta Metall. Sin., 2019, 55: 126
6 任建强, 梁淑华, 姜伊辉 等. 原位(TiB2-TiB)/Cu复合材料组织与性能研究 [J]. 金属学报, 2019, 55: 126
doi: 10.11900/0412.1961.2017.00532
7 Liu Y G, Zhang J Q, Tan Q Y, et al. Additive manufacturing of high strength copper alloy with heterogeneous grain structure through laser powder bed fusion [J]. Acta Mater., 2021, 220: 117311
doi: 10.1016/j.actamat.2021.117311
8 Li R G, Guo E Y, Chen Z N, et al. Optimization of the balance between high strength and high electrical conductivity in CuCrZr alloys through two-step cryorolling and aging [J]. J. Alloys Compd., 2019, 771: 1044
doi: 10.1016/j.jallcom.2018.09.040
9 Fu Q Q, Li B, Gao M Q, et al. Quantitative mechanisms behind the high strength and electrical conductivity of Cu-Te alloy manufactured by continuous extrusion [J]. J. Mater. Sci. Technol., 2022, 121: 9
doi: 10.1016/j.jmst.2021.12.046
10 Karabay S. Modification of AA-6201 alloy for manufacturing of high conductivity and extra high conductivity wires with property of high tensile stress after artificial aging heat treatment for all-aluminium alloy conductors [J]. Mater. Des., 2006, 27: 821
doi: 10.1016/j.matdes.2005.06.005
11 Rhee H, Whittington W R, Oppedal A L, et al. Mechanical properties of novel aluminum metal matrix metallic composites: Application to overhead conductors [J]. Mater. Des., 2015, 88: 16
doi: 10.1016/j.matdes.2015.08.109
12 Cabibbo M. Microstructure strengthening mechanisms in different equal channel angular pressed aluminum alloys [J]. Mater. Sci. Eng., 2013, A560: 413
13 Ding S X, Lee W T, Chang C P, et al. Improvement of strength of magnesium alloy processed by equal channel angular extrusion [J]. Scr. Mater., 2008, 59: 1006
doi: 10.1016/j.scriptamat.2008.07.007
14 Kim W J, Wang J Y. Microstructure of the post-ECAP aging processed 6061 Al alloys [J]. Mater. Sci. Eng., 2007, A464: 23
15 Ito Y, Horita Z. Microstructural evolution in pure aluminum processed by high-pressure torsion [J]. Mater. Sci. Eng., 2009, A503: 32
16 Kamikawa N, Huang X X, Tsuji N, et al. Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed [J]. Acta Mater., 2009, 57: 4198
doi: 10.1016/j.actamat.2009.05.017
17 Saito Y, Utsunomiya H, Tsuji N, et al. Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process [J]. Acta Mater., 1999, 47: 579
doi: 10.1016/S1359-6454(98)00365-6
18 Feng T L, Qiu B, Ruan X L. Coupling between phonon-phonon and phonon-impurity scattering: A critical revisit of the spectral Matthiessen's rule [J]. Phys. Rev., 2015, 92B: 235206
19 Botcharova E, Freudenberger J, Schultz L. Mechanical and electrical properties of mechanically alloyed nanocrystalline Cu-Nb alloys [J]. Acta Mater., 2006, 54: 3333
doi: 10.1016/j.actamat.2006.03.021
20 Murashkin M Y, Sabirov I, Sauvage X, et al. Nanostructured Al and Cu alloys with superior strength and electrical conductivity [J]. J. Mater. Sci., 2016, 51: 33
doi: 10.1007/s10853-015-9354-9
21 Sabirov I, Murashkin M Y, Valiev R Z. Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development [J]. Mater. Sci. Eng., 2013, A560: 1
22 Valiev R Z, Murashkin M Y, Sabirov I. A nanostructural design to produce high-strength Al alloys with enhanced electrical conductivity [J]. Scr. Mater., 2014, 76: 13
doi: 10.1016/j.scriptamat.2013.12.002
23 Murashkin M Y, Sabirov I, Medvedev A E, et al. Mechanical and electrical properties of an ultrafine grained Al-8.5wt.% RE (RE = 5.4wt.% Ce, 3.1wt.% La) alloy processed by severe plastic deformation [J]. Mater. Des., 2016, 90: 433
doi: 10.1016/j.matdes.2015.10.163
24 Murashkin M Y, Sabirov I, Kazykhanov V U, et al. Enhanced mechanical properties and electrical conductivity in ultrafine-grained Al alloy processed via ECAP-PC [J]. J. Mater. Sci., 2013, 48: 4501
doi: 10.1007/s10853-013-7279-8
25 Zhu C C, Ma A B, Jiang J H, et al. Effect of ECAP combined cold working on mechanical properties and electrical conductivity of Conform-produced Cu-Mg alloys [J]. J. Alloys Compd., 2014, 582: 135
doi: 10.1016/j.jallcom.2013.08.007
26 Karabay S, Uzman I. Inoculation of transition elements by addition of AlB2 and AlB12 to decrease detrimental effect on the conductivity of 99.6% aluminium in CCL for manufacturing of conductor [J]. J. Mater. Process. Technol., 2005, 160: 174
doi: 10.1016/j.jmatprotec.2004.06.015
27 Li P F, Wu Z G, Wang Y L, et al. Effect of cerium on mechanical performance and electrical conductivity of aluminum rod for electrical purpose [J]. J. Rare Earths, 2006, 24: 355
doi: 10.1016/S1002-0721(07)60400-1
28 Cui X L, Wu Y Y, Liu X F, et al. Effects of grain refinement and boron treatment on electrical conductivity and mechanical properties of AA1070 aluminum [J]. Mater. Des., 2015, 86: 397
doi: 10.1016/j.matdes.2015.06.149
29 Liao H C, Liu Y, Lü C L, et al. Effect of Ce addition on castability, mechanical properties and electric conductivity of Al-0.3Si-0.2Mg alloy [J]. Int. J. Cast. Met. Res., 2015, 28: 213
doi: 10.1179/1743133615Y.0000000002
30 Xie M, Liu J L, Lu X Y, et al. Investigation on the Cu-Cr-RE alloys by rapid solidification [J]. Mater. Sci. Eng., 2001, A304-306: 529
31 Hou J P, Li R, Wang Q, et al. Three principles for preparing Al wire with high strength and high electrical conductivity [J]. J. Mater. Sci. Technol., 2019, 35: 742
doi: 10.1016/j.jmst.2018.11.013
32 Hou J P, Wang Q, Zhang Z J, et al. Nano-scale precipitates: The key to high strength and high conductivity in Al alloy wire [J]. Mater. Des., 2017, 132: 148
doi: 10.1016/j.matdes.2017.06.062
33 Li J Z, Ding H, Li B M, et al. Microstructure evolution and properties of a Cu-Cr-Zr alloy with high strength and high conductivity [J]. Mater. Sci. Eng., 2021, A819: 141464
34 Wang Y P, Fu R D, Li Y J, et al. A high strength and high electrical conductivity Cu-Cr-Zr alloy fabricated by cryogenic friction stir processing and subsequent annealing treatment [J]. Mater. Sci. Eng., 2019, A755: 166
35 Ye Y X, Yang X Y, Wang J, et al. Enhanced strength and electrical conductivity of Cu-Zr-B alloy by double deformation-aging process [J]. J. Alloys Compd., 2014, 615: 249
doi: 10.1016/j.jallcom.2014.07.010
36 Carlton C E, Ferreira P J. What is behind the inverse Hall-Petch effect in nanocrystalline materials? [J]. Acta Mater., 2007, 55: 3749
doi: 10.1016/j.actamat.2007.02.021
37 Hall E O. The deformation and ageing of mild steel: III Discussion of results [J]. Proc. Phys. Soc., 1951, 64B: 747
38 Wyrzykowski J W, Grabski M W. The Hall-Petch relation in aluminium and its dependence on the grain boundary structure [J]. Philos. Mag., 1986, 53A: 505
39 Miyajima Y, Komatsu S Y, Mitsuhara M, et al. Change in electrical resistivity of commercial purity aluminium severely plastic deformed [J]. Philos. Mag., 2010, 90: 4475
doi: 10.1080/14786435.2010.510453
40 Ritchie R O. The conflicts between strength and toughness [J]. Nat. Mater., 2011, 10: 817
doi: 10.1038/nmat3115 pmid: 22020005
41 Wang H W, He Z F, Jia N. Microstructure and mechanical properties of a FeMnCoCr high-entropy alloy with heterogeneous structure [J]. Acta Metall. Sin., 2021, 57: 632
doi: 10.11900/0412.1961.2020.00225
41 王洪伟, 何竹风, 贾 楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能 [J]. 金属学报, 2021, 57: 632
doi: 10.11900/0412.1961.2020.00225
42 Wu X L, Zhu Y T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties [J]. Mater. Res. Lett., 2017, 5: 527
doi: 10.1080/21663831.2017.1343208
43 Zhu Y T, Wu X L. Perspective on hetero-deformation induced (HDI) hardening and back stress [J]. Mater. Res. Lett., 2019, 7: 393
doi: 10.1080/21663831.2019.1616331
44 An X H, Wu S D, Wang Z G, et al. Enhanced cyclic deformation responses of ultrafine-grained Cu and nanocrystalline Cu-Al alloys [J]. Acta Mater., 2014, 74: 200
doi: 10.1016/j.actamat.2014.04.053
45 Li P, Li S X, Wang Z G, et al. Fundamental factors on formation mechanism of dislocation arrangements in cyclically deformed fcc single crystals [J]. Prog. Mater. Sci., 2011, 56: 328
doi: 10.1016/j.pmatsci.2010.12.001
46 Wang X F, Guo M X, Luo J R, et al. Effect of intermediate annealing time on microstructure, texture and mechanical properties of Al-Mg-Si-Cu alloy [J]. Mater. Charact., 2018, 142: 309
doi: 10.1016/j.matchar.2018.05.048
47 Wang S C, Starink M J, Gao N, et al. Texture evolution by shear on two planes during ECAP of a high-strength aluminum alloy [J]. Acta Mater., 2008, 56: 3800
doi: 10.1016/j.actamat.2008.04.022
48 Zhang J Y, Ma M Y, Shen F H, et al. Influence of deformation and annealing on electrical conductivity, mechanical properties and texture of Al-Mg-Si alloy cables [J]. Mater. Sci. Eng., 2018, A710: 27
49 Hou J P, Chen Q Y, Wang Q, et al. Effects of annealing treatment on the microstructure evolution and the strength degradation behavior of the commercially pure Al conductor [J]. Mater. Sci. Eng., 2017, A707: 511
50 Hou J P, Li R, Wang Q, et al. Breaking the trade-off relation of strength and electrical conductivity in pure Al wire by controlling texture and grain boundary [J]. J. Alloys Compd., 2018, 769: 96
doi: 10.1016/j.jallcom.2018.07.358
51 Parthasarathy T A, Rao S I, Dimiduk D M, et al. Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples [J]. Scr. Mater., 2007, 56: 313
doi: 10.1016/j.scriptamat.2006.09.016
52 Beyerlein I J, Tóth L S. Texture evolution in equal-channel angular extrusion [J]. Prog. Mater. Sci., 2009, 54: 427
doi: 10.1016/j.pmatsci.2009.01.001
53 Bailey J E, Hirsch P B. The dislocation distribution, flow stress, and stored energy in cold-worked polycrystalline silver [J]. Philos. Mag., 1960, 5: 485
doi: 10.1080/14786436008238300
54 Hansen N, Huang X. Microstructure and flow stress of polycrystals and single crystals [J]. Acta Mater., 1998, 46: 1827
doi: 10.1016/S1359-6454(97)00365-0
55 Matthiessen A, Vogt A C C. On the influence of temperature on the electric conducting-power of alloys [J]. Philos. Trans., 1864, 154: 167
56 Murata Y, Nakaya I, Morinaga M. Assessment of strain energy by measuring dislocation density in copper and aluminium prepared by ECAP and ARB [J]. Mater. Trans., 2008, 49: 20
doi: 10.2320/matertrans.ME200707
57 Miyajima Y, Mitsuhara M, Hata S, et al. Quantification of internal dislocation density using scanning transmission electron microscopy in ultrafine grained pure aluminium fabricated by severe plastic deformation [J]. Mater. Sci. Eng., 2010, A528: 776
58 Zhang J W, Gao N, Starink M J. Microstructure development and hardening during high pressure torsion of commercially pure aluminium: Strain reversal experiments and a dislocation based model [J]. Mater. Sci. Eng., 2011, A528: 2581
59 Sauvage X, Bobruk E V, Murashkin M Y, et al. Optimization of electrical conductivity and strength combination by structure design at the nanoscale in Al-Mg-Si alloys [J]. Acta Mater., 2015, 98: 355
doi: 10.1016/j.actamat.2015.07.039
[1] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[2] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[3] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[5] 沈国慧, 胡斌, 杨占兵, 罗海文. 回火温度对含 δ 铁素体高铝中锰钢力学性能和显微组织的影响[J]. 金属学报, 2022, 58(2): 165-174.
[6] 王韬, 龙弟均, 余黎明, 刘永长, 李会军, 王祖敏. 超高压烧结制备14Cr-ODS钢及微观组织与力学性能[J]. 金属学报, 2022, 58(2): 184-192.
[7] 赵永好, 毛庆忠. 纳米金属结构材料的韧化[J]. 金属学报, 2022, 58(11): 1385-1398.
[8] 王硕, 王俊升. Al-Li合金中 δ′/θ′/δ复合沉淀相结构演化及稳定性的第一性原理探究[J]. 金属学报, 2022, 58(10): 1325-1333.
[9] 张旭, 田谨, 薛敏涛, 江峰, 李苏植, 张博召, 丁俊, 李小平, 马恩, 丁向东, 孙军. 2000℃高温高承载的Ta-W难熔合金[J]. 金属学报, 2022, 58(10): 1253-1260.
[10] 孙士杰, 田艳中, 张哲峰. 析出强化Fe53Mn15Ni15Cr10Al4Ti2C1 高熵合金强韧化机制[J]. 金属学报, 2022, 58(1): 54-66.
[11] 李文文, 陈波, 熊华平, 尚泳来, 毛唯, 程耀永. 第二代单晶高温合金DD6高性能钎焊接头的组织及力学性能[J]. 金属学报, 2021, 57(8): 959-966.
[12] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[13] 王慧远, 夏楠, 布如宇, 王珵, 查敏, 杨治政. 低合金化高性能变形镁合金研究现状及展望[J]. 金属学报, 2021, 57(11): 1429-1437.
[14] 李吉臣, 冯迪, 夏卫生, 林高用, 张新明, 任敏文. 非等温时效对7B50铝合金组织及性能的影响[J]. 金属学报, 2020, 56(9): 1255-1264.
[15] 张林, 郭晓, 高建文, 邓安元, 王恩刚. 电磁搅拌对TiB2颗粒增强钢组织和力学性能的影响[J]. 金属学报, 2020, 56(9): 1239-1246.