|
|
突破强度-导电率制约关系:晶粒异构设计 |
侯嘉鹏, 孙朋飞, 王强, 张振军, 张哲峰( ) |
中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 |
|
Breaking the Trade-Off Relation Between Strength and Electrical Conductivity: Heterogeneous Grain Design |
HOU Jiapeng, SUN Pengfei, WANG Qiang, ZHANG Zhenjun, ZHANG Zhefeng( ) |
Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
侯嘉鹏, 孙朋飞, 王强, 张振军, 张哲峰. 突破强度-导电率制约关系:晶粒异构设计[J]. 金属学报, 2022, 58(11): 1467-1477.
Jiapeng HOU,
Pengfei SUN,
Qiang WANG,
Zhenjun ZHANG,
Zhefeng ZHANG.
Breaking the Trade-Off Relation Between Strength and Electrical Conductivity: Heterogeneous Grain Design[J]. Acta Metall Sin, 2022, 58(11): 1467-1477.
1 |
Hou J P, Wang Q, Yang H J, et al. Microstructure evolution and strengthening mechanisms of cold-drawn commercially pure aluminum wire [J]. Mater. Sci. Eng., 2015, A639: 103
|
2 |
Guan R G, Shen Y F, Zhao Z Y, et al. A high-strength, ductile Al-0.35Sc-0.2Zr alloy with good electrical conductivity strengthened by coherent nanosized-precipitates [J]. J. Mater. Sci. Technol., 2017, 33: 215
|
3 |
Liu L, Jiang J T, Zhang B, et al. Enhancement of strength and electrical conductivity for a dilute Al-Sc-Zr alloy via heat treatments and cold drawing [J]. J. Mater. Sci. Technol., 2019, 35: 962
doi: 10.1016/j.jmst.2018.12.023
|
4 |
Yuan W H, Liang Z Y, Zhang C Y, et al. Effects of La addition on the mechanical properties and thermal-resistant properties of Al-Mg-Si-Zr alloys based on AA 6201 [J]. Mater. Des., 2012, 34: 788
doi: 10.1016/j.matdes.2011.07.003
|
5 |
Li Y P, Xiao Z, Li Z, et al. Microstructure and properties of a novel Cu-Mg-Ca alloy with high strength and high electrical conductivity [J]. J. Alloys Compd., 2017, 723: 1162
doi: 10.1016/j.jallcom.2017.06.155
|
6 |
Ren J Q, Liang S H, Jiang Y H, et al. Research on the microstructure and properties of in situ (TiB2-TiB)/Cu composites [J]. Acta Metall. Sin., 2019, 55: 126
|
6 |
任建强, 梁淑华, 姜伊辉 等. 原位(TiB2-TiB)/Cu复合材料组织与性能研究 [J]. 金属学报, 2019, 55: 126
doi: 10.11900/0412.1961.2017.00532
|
7 |
Liu Y G, Zhang J Q, Tan Q Y, et al. Additive manufacturing of high strength copper alloy with heterogeneous grain structure through laser powder bed fusion [J]. Acta Mater., 2021, 220: 117311
doi: 10.1016/j.actamat.2021.117311
|
8 |
Li R G, Guo E Y, Chen Z N, et al. Optimization of the balance between high strength and high electrical conductivity in CuCrZr alloys through two-step cryorolling and aging [J]. J. Alloys Compd., 2019, 771: 1044
doi: 10.1016/j.jallcom.2018.09.040
|
9 |
Fu Q Q, Li B, Gao M Q, et al. Quantitative mechanisms behind the high strength and electrical conductivity of Cu-Te alloy manufactured by continuous extrusion [J]. J. Mater. Sci. Technol., 2022, 121: 9
doi: 10.1016/j.jmst.2021.12.046
|
10 |
Karabay S. Modification of AA-6201 alloy for manufacturing of high conductivity and extra high conductivity wires with property of high tensile stress after artificial aging heat treatment for all-aluminium alloy conductors [J]. Mater. Des., 2006, 27: 821
doi: 10.1016/j.matdes.2005.06.005
|
11 |
Rhee H, Whittington W R, Oppedal A L, et al. Mechanical properties of novel aluminum metal matrix metallic composites: Application to overhead conductors [J]. Mater. Des., 2015, 88: 16
doi: 10.1016/j.matdes.2015.08.109
|
12 |
Cabibbo M. Microstructure strengthening mechanisms in different equal channel angular pressed aluminum alloys [J]. Mater. Sci. Eng., 2013, A560: 413
|
13 |
Ding S X, Lee W T, Chang C P, et al. Improvement of strength of magnesium alloy processed by equal channel angular extrusion [J]. Scr. Mater., 2008, 59: 1006
doi: 10.1016/j.scriptamat.2008.07.007
|
14 |
Kim W J, Wang J Y. Microstructure of the post-ECAP aging processed 6061 Al alloys [J]. Mater. Sci. Eng., 2007, A464: 23
|
15 |
Ito Y, Horita Z. Microstructural evolution in pure aluminum processed by high-pressure torsion [J]. Mater. Sci. Eng., 2009, A503: 32
|
16 |
Kamikawa N, Huang X X, Tsuji N, et al. Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed [J]. Acta Mater., 2009, 57: 4198
doi: 10.1016/j.actamat.2009.05.017
|
17 |
Saito Y, Utsunomiya H, Tsuji N, et al. Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process [J]. Acta Mater., 1999, 47: 579
doi: 10.1016/S1359-6454(98)00365-6
|
18 |
Feng T L, Qiu B, Ruan X L. Coupling between phonon-phonon and phonon-impurity scattering: A critical revisit of the spectral Matthiessen's rule [J]. Phys. Rev., 2015, 92B: 235206
|
19 |
Botcharova E, Freudenberger J, Schultz L. Mechanical and electrical properties of mechanically alloyed nanocrystalline Cu-Nb alloys [J]. Acta Mater., 2006, 54: 3333
doi: 10.1016/j.actamat.2006.03.021
|
20 |
Murashkin M Y, Sabirov I, Sauvage X, et al. Nanostructured Al and Cu alloys with superior strength and electrical conductivity [J]. J. Mater. Sci., 2016, 51: 33
doi: 10.1007/s10853-015-9354-9
|
21 |
Sabirov I, Murashkin M Y, Valiev R Z. Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development [J]. Mater. Sci. Eng., 2013, A560: 1
|
22 |
Valiev R Z, Murashkin M Y, Sabirov I. A nanostructural design to produce high-strength Al alloys with enhanced electrical conductivity [J]. Scr. Mater., 2014, 76: 13
doi: 10.1016/j.scriptamat.2013.12.002
|
23 |
Murashkin M Y, Sabirov I, Medvedev A E, et al. Mechanical and electrical properties of an ultrafine grained Al-8.5wt.% RE (RE = 5.4wt.% Ce, 3.1wt.% La) alloy processed by severe plastic deformation [J]. Mater. Des., 2016, 90: 433
doi: 10.1016/j.matdes.2015.10.163
|
24 |
Murashkin M Y, Sabirov I, Kazykhanov V U, et al. Enhanced mechanical properties and electrical conductivity in ultrafine-grained Al alloy processed via ECAP-PC [J]. J. Mater. Sci., 2013, 48: 4501
doi: 10.1007/s10853-013-7279-8
|
25 |
Zhu C C, Ma A B, Jiang J H, et al. Effect of ECAP combined cold working on mechanical properties and electrical conductivity of Conform-produced Cu-Mg alloys [J]. J. Alloys Compd., 2014, 582: 135
doi: 10.1016/j.jallcom.2013.08.007
|
26 |
Karabay S, Uzman I. Inoculation of transition elements by addition of AlB2 and AlB12 to decrease detrimental effect on the conductivity of 99.6% aluminium in CCL for manufacturing of conductor [J]. J. Mater. Process. Technol., 2005, 160: 174
doi: 10.1016/j.jmatprotec.2004.06.015
|
27 |
Li P F, Wu Z G, Wang Y L, et al. Effect of cerium on mechanical performance and electrical conductivity of aluminum rod for electrical purpose [J]. J. Rare Earths, 2006, 24: 355
doi: 10.1016/S1002-0721(07)60400-1
|
28 |
Cui X L, Wu Y Y, Liu X F, et al. Effects of grain refinement and boron treatment on electrical conductivity and mechanical properties of AA1070 aluminum [J]. Mater. Des., 2015, 86: 397
doi: 10.1016/j.matdes.2015.06.149
|
29 |
Liao H C, Liu Y, Lü C L, et al. Effect of Ce addition on castability, mechanical properties and electric conductivity of Al-0.3Si-0.2Mg alloy [J]. Int. J. Cast. Met. Res., 2015, 28: 213
doi: 10.1179/1743133615Y.0000000002
|
30 |
Xie M, Liu J L, Lu X Y, et al. Investigation on the Cu-Cr-RE alloys by rapid solidification [J]. Mater. Sci. Eng., 2001, A304-306: 529
|
31 |
Hou J P, Li R, Wang Q, et al. Three principles for preparing Al wire with high strength and high electrical conductivity [J]. J. Mater. Sci. Technol., 2019, 35: 742
doi: 10.1016/j.jmst.2018.11.013
|
32 |
Hou J P, Wang Q, Zhang Z J, et al. Nano-scale precipitates: The key to high strength and high conductivity in Al alloy wire [J]. Mater. Des., 2017, 132: 148
doi: 10.1016/j.matdes.2017.06.062
|
33 |
Li J Z, Ding H, Li B M, et al. Microstructure evolution and properties of a Cu-Cr-Zr alloy with high strength and high conductivity [J]. Mater. Sci. Eng., 2021, A819: 141464
|
34 |
Wang Y P, Fu R D, Li Y J, et al. A high strength and high electrical conductivity Cu-Cr-Zr alloy fabricated by cryogenic friction stir processing and subsequent annealing treatment [J]. Mater. Sci. Eng., 2019, A755: 166
|
35 |
Ye Y X, Yang X Y, Wang J, et al. Enhanced strength and electrical conductivity of Cu-Zr-B alloy by double deformation-aging process [J]. J. Alloys Compd., 2014, 615: 249
doi: 10.1016/j.jallcom.2014.07.010
|
36 |
Carlton C E, Ferreira P J. What is behind the inverse Hall-Petch effect in nanocrystalline materials? [J]. Acta Mater., 2007, 55: 3749
doi: 10.1016/j.actamat.2007.02.021
|
37 |
Hall E O. The deformation and ageing of mild steel: III Discussion of results [J]. Proc. Phys. Soc., 1951, 64B: 747
|
38 |
Wyrzykowski J W, Grabski M W. The Hall-Petch relation in aluminium and its dependence on the grain boundary structure [J]. Philos. Mag., 1986, 53A: 505
|
39 |
Miyajima Y, Komatsu S Y, Mitsuhara M, et al. Change in electrical resistivity of commercial purity aluminium severely plastic deformed [J]. Philos. Mag., 2010, 90: 4475
doi: 10.1080/14786435.2010.510453
|
40 |
Ritchie R O. The conflicts between strength and toughness [J]. Nat. Mater., 2011, 10: 817
doi: 10.1038/nmat3115
pmid: 22020005
|
41 |
Wang H W, He Z F, Jia N. Microstructure and mechanical properties of a FeMnCoCr high-entropy alloy with heterogeneous structure [J]. Acta Metall. Sin., 2021, 57: 632
doi: 10.11900/0412.1961.2020.00225
|
41 |
王洪伟, 何竹风, 贾 楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能 [J]. 金属学报, 2021, 57: 632
doi: 10.11900/0412.1961.2020.00225
|
42 |
Wu X L, Zhu Y T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties [J]. Mater. Res. Lett., 2017, 5: 527
doi: 10.1080/21663831.2017.1343208
|
43 |
Zhu Y T, Wu X L. Perspective on hetero-deformation induced (HDI) hardening and back stress [J]. Mater. Res. Lett., 2019, 7: 393
doi: 10.1080/21663831.2019.1616331
|
44 |
An X H, Wu S D, Wang Z G, et al. Enhanced cyclic deformation responses of ultrafine-grained Cu and nanocrystalline Cu-Al alloys [J]. Acta Mater., 2014, 74: 200
doi: 10.1016/j.actamat.2014.04.053
|
45 |
Li P, Li S X, Wang Z G, et al. Fundamental factors on formation mechanism of dislocation arrangements in cyclically deformed fcc single crystals [J]. Prog. Mater. Sci., 2011, 56: 328
doi: 10.1016/j.pmatsci.2010.12.001
|
46 |
Wang X F, Guo M X, Luo J R, et al. Effect of intermediate annealing time on microstructure, texture and mechanical properties of Al-Mg-Si-Cu alloy [J]. Mater. Charact., 2018, 142: 309
doi: 10.1016/j.matchar.2018.05.048
|
47 |
Wang S C, Starink M J, Gao N, et al. Texture evolution by shear on two planes during ECAP of a high-strength aluminum alloy [J]. Acta Mater., 2008, 56: 3800
doi: 10.1016/j.actamat.2008.04.022
|
48 |
Zhang J Y, Ma M Y, Shen F H, et al. Influence of deformation and annealing on electrical conductivity, mechanical properties and texture of Al-Mg-Si alloy cables [J]. Mater. Sci. Eng., 2018, A710: 27
|
49 |
Hou J P, Chen Q Y, Wang Q, et al. Effects of annealing treatment on the microstructure evolution and the strength degradation behavior of the commercially pure Al conductor [J]. Mater. Sci. Eng., 2017, A707: 511
|
50 |
Hou J P, Li R, Wang Q, et al. Breaking the trade-off relation of strength and electrical conductivity in pure Al wire by controlling texture and grain boundary [J]. J. Alloys Compd., 2018, 769: 96
doi: 10.1016/j.jallcom.2018.07.358
|
51 |
Parthasarathy T A, Rao S I, Dimiduk D M, et al. Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples [J]. Scr. Mater., 2007, 56: 313
doi: 10.1016/j.scriptamat.2006.09.016
|
52 |
Beyerlein I J, Tóth L S. Texture evolution in equal-channel angular extrusion [J]. Prog. Mater. Sci., 2009, 54: 427
doi: 10.1016/j.pmatsci.2009.01.001
|
53 |
Bailey J E, Hirsch P B. The dislocation distribution, flow stress, and stored energy in cold-worked polycrystalline silver [J]. Philos. Mag., 1960, 5: 485
doi: 10.1080/14786436008238300
|
54 |
Hansen N, Huang X. Microstructure and flow stress of polycrystals and single crystals [J]. Acta Mater., 1998, 46: 1827
doi: 10.1016/S1359-6454(97)00365-0
|
55 |
Matthiessen A, Vogt A C C. On the influence of temperature on the electric conducting-power of alloys [J]. Philos. Trans., 1864, 154: 167
|
56 |
Murata Y, Nakaya I, Morinaga M. Assessment of strain energy by measuring dislocation density in copper and aluminium prepared by ECAP and ARB [J]. Mater. Trans., 2008, 49: 20
doi: 10.2320/matertrans.ME200707
|
57 |
Miyajima Y, Mitsuhara M, Hata S, et al. Quantification of internal dislocation density using scanning transmission electron microscopy in ultrafine grained pure aluminium fabricated by severe plastic deformation [J]. Mater. Sci. Eng., 2010, A528: 776
|
58 |
Zhang J W, Gao N, Starink M J. Microstructure development and hardening during high pressure torsion of commercially pure aluminium: Strain reversal experiments and a dislocation based model [J]. Mater. Sci. Eng., 2011, A528: 2581
|
59 |
Sauvage X, Bobruk E V, Murashkin M Y, et al. Optimization of electrical conductivity and strength combination by structure design at the nanoscale in Al-Mg-Si alloys [J]. Acta Mater., 2015, 98: 355
doi: 10.1016/j.actamat.2015.07.039
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|