Please wait a minute...
金属学报  2020, Vol. 56 Issue (9): 1255-1264    DOI: 10.11900/0412.1961.2020.00004
  本期目录 | 过刊浏览 |
非等温时效对7B50铝合金组织及性能的影响
李吉臣1, 冯迪1,2(), 夏卫生2, 林高用3, 张新明3, 任敏文1
1 江苏科技大学材料科学与工程学院 镇江 212003
2 华中科技大学材料科学与工程学院 武汉 430074
3 中南大学材料科学与工程学院 长沙 410083
Effect of Non-Isothermal Ageing on Microstructure and Properties of 7B50 Aluminum Alloy
LI Jichen1, FENG Di1,2(), XIA Weisheng2, LIN Gaoyong3, ZHANG Xinming3, REN Minwen1
1 School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
2 School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
3 School of Materials Science and Engineering, Central South University, Changsha 410083, China
引用本文:

李吉臣, 冯迪, 夏卫生, 林高用, 张新明, 任敏文. 非等温时效对7B50铝合金组织及性能的影响[J]. 金属学报, 2020, 56(9): 1255-1264.
Jichen LI, Di FENG, Weisheng XIA, Gaoyong LIN, Xinming ZHANG, Minwen REN. Effect of Non-Isothermal Ageing on Microstructure and Properties of 7B50 Aluminum Alloy[J]. Acta Metall Sin, 2020, 56(9): 1255-1264.

全文: PDF(4533 KB)   HTML
摘要: 

采用硬度测试、电导率测试、室温拉伸、TEM观察、DSC分析以及剥落腐蚀实验,研究了非等温时效对7B50铝合金热轧厚板的微观组织及耐蚀性能的影响。结果表明:经过480 ℃、1 h固溶后室温水淬火,再经1 ℃/min的加热速率升温至215 ℃后立即炉冷至室温的非等温时效,7B50铝合金的晶内析出相细小弥散,晶界相粗大断续。合金抗拉强度可达605 MPa,剥落腐蚀等级可达EB,综合性能优于单级等温峰时效(T6)和双级等温过时效(T76),与回归再时效(RRA)态性能类似。非等温时效技术实现了短流程操作,且取消等温保温的措施更适用于厚板的时效热处理。

关键词 7B50铝合金非等温时效强度剥落腐蚀性能    
Abstract

Due to the temperature rising or cooling stage in thick plate, non-isothermal ageing has been the research hotspot of heat treatment for Al-Zn-Mg-Cu alloy thick plate. It is possible to replace the isothermal ageing by non-isothermal one because of the high efficiency and practicability. As one of the Al-Zn-Mg-Cu alloy, 7B50 aluminum alloy and its thick plate have supposed to manufacture the wing in "Yun-20" big plane. In this work, hardness test, electrical conductivity test, room temperature tensile test, DSC analysis, exfoliation corrosion test and TEM observation were used to study the influence of non-isothermal ageing on microstructure and corrosion resistance of 7B50 aluminum alloy hot rolling thick plate. Results revealed that, after 480 ℃, 1 h solution and quenched in room temperature water, followed by ageing from room temperature to 215 ℃ at 1 ℃/min heating rate, and furnace cooling to room temperature immediately, the inner precipitates of 7B50 aluminum alloy are fine and dispersed while the ones on grain boundary are coarsened and discontinuous. The tensile strength and exfoliation corrosion grade reached to 605 MPa and EB level, respectively. Comprehensive performance of 7B50 aluminum alloy are excellent overall those of isothermal peak ageing (T6) or isothermal double stages over ageing (T76), but similar to that of retrogression and re-ageing (RRA) treatment. The non-isothermal ageing realized the short process preparation and the measure removing isothermal stage is more suitable for thick plates.

Key words7B50 aluminum alloy    non-isothermal ageing    strength    exfoliation corrosion property
收稿日期: 2020-01-02     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(51801082);江苏省自然科学基金项目(BK20160560);江苏省大学生创新创业训练计划项目(201910289095Y)
作者简介: 李吉臣,男,1997年生,硕士生
图1  非等温时效(NIT)工艺路线
图2  7B50铝合金非等温时效过程中的硬度和电导率变化曲线
图3  不同时效状态7B50铝合金的室温拉伸性能
图4  不同时效状态下7B50铝合金的晶内相的TEM明场像及SAED谱Color online
图5  不同时效状态下7B50铝合金的晶界相的TEM明场相
图6  不同时效状态试样侵蚀不同时间的剥落腐蚀形貌(a) C25, 6 h;(b) C25, 12 h;(c) C25, 24 h;(d) C25, 48 h;(e) T76, 48 h;(f) RRA, 48 h
图7  7B50铝合金非等温时效过程中的Scheil积分-升温时间关系曲线
图8  不同非等温时效处理的7B50铝合金的DSC曲线
[1] Feng D, Zhang X M, Chen H M, et al. Effect of non-isothermal retrogression and re-ageing on microstructure and properties of Al-8Zn-2Mg-2Cu alloy thick plate [J]. Acta Metall. Sin., 2018, 54: 100
[1] (冯 迪, 张新明, 陈洪美等. 非等温回归再时效对Al-8Zn-2Mg-2Cu合金厚板组织及性能的影响 [J]. 金属学报, 2018, 54: 100)
[2] Rometsch P A, Zhang Y, Knight S. Heat treatment of 7xxx series aluminium alloys—Some recent developments [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 2003
[3] Zhang X M, Deng Y L, Zhang Y. Development of high strength aluminum alloys and processing techniques for the materials [J]. Acta Metall. Sin., 2015, 51: 257
[3] (张新明, 邓运来, 张 勇. 高强铝合金的发展及其材料的制备加工技术 [J]. 金属学报, 2015, 51: 257)
[4] Cina B M. Reducing the susceptibility of alloys, particularly aluminium alloys, to stress corrosion cracking [P]. US Pat, 3856584, 1974
[5] Ø Grong, Shercliff H R. Microstructural modelling in metals processing [J]. Prog. Mater. Sci., 2002, 47: 163
[6] Hutchinson C R, Gouné M, Redjaïmia A. Selecting non-isothermal heat treatment schedules for precipitation hardening systems: An example of coupled process-property optimization [J]. Acta Mater., 2007, 55: 213
[7] Feng D, Zhang X M, Liu S D, et al. The effect of pre-ageing temperature and retrogression heating rate on the microstructure and properties of AA7055 [J]. Mater. Sci. Eng., 2013, A588: 34
[8] Li K, Zhang K, Yang L, et al. Investigation of non-isothermal aging process of 7085 aluminum alloy [A]. Proceedings of the 12th International Conference on Aluminium Alloys [C]. Yokohama, Japan: The Japan Institute of Light Metals, 2010: 2120
[9] Tang Q J. Study on cooling ageing process of 7A85 aluminum alloy [D]. Harbin: Harbin Institute of Technology, 2010
[9] (唐秋菊. 7A85铝合金降温时效工艺的研究 [D]. 哈尔滨: 哈尔滨工业大学, 2010)
[10] Jiang J T, Tang Q J, Yang L, et al. Non-isothermal ageing of an Al-8Zn-2Mg-2Cu alloy for enhanced properties [J]. J. Mater. Process. Technol., 2016, 48: 110
[11] Liu Y, Jiang D M, Li B Q, et al. Heating aging behavior of Al-8.35Zn-2.5Mg-2.25Cu alloy [J]. Mater. Des., 2014, 60: 116
[12] Peng X Y, Guo Q, Liang X P, et al. Mechanical properties, corrosion behavior and microstructures of a non-isothermal ageing treated Al-Zn-Mg-Cu alloy [J]. Mater. Sci. Eng., 2017, A688: 146
[13] Liu Y, Liang S, Jiang D M. Influence of repetitious non-isothermal aging on microstructure and strength of Al-Zn-Mg-Cu alloy [J]. J. Alloys Compd., 2016, 689: 632
doi: 10.1016/j.jallcom.2016.08.017
[14] AMS 4252B-2005 Aluminum alloy, plate 6.4Zn-2.4Mg-2.2Cu-0.12Zr (7150-T7751) solution heat treated, stress relieved, and overaged [S]. 2005
[15] Feng D, Zhang X M, Liu S D, et al. Effect of pre-aging temperature and retrogression heating rate on microstructure and properties of 7150 alloy [J]. Chin. J. Nonferrous Met., 2013, 23: 1173
[15] (冯 迪, 张新明, 刘胜胆等. 预时效温度及回归加热速率对7150铝合金显微组织及性能的影响 [J]. 中国有色金属学报, 2013, 23: 1173)
[16] Xu D, Li Z H, Wang G J, et al. Phase transformation and microstructure evolution of an ultra-high strength Al-Zn-Mg-Cu alloy during homogenization [J]. Mater. Charact., 2017, 131: 285
doi: 10.1016/j.matchar.2017.07.011
[17] Azarniya A, Taheri A K, Taheri K K. Recent advances in ageing of 7xxx series aluminum alloys: A physical metallurgy perspective [J]. J. Alloys Compd., 2019, 781: 945
doi: 10.1016/j.jallcom.2018.11.286
[18] Jiang D M, Liu Y, Liang S, et al. The effects of non-isothermal aging on the strength and corrosion behavior of Al-Zn-Mg-Cu alloy [J]. J. Alloys Compd., 2016, 681: 57
doi: 10.1016/j.jallcom.2016.04.208
[19] Liu L L, Pan Q L, Wang X D, et al. The effects of aging treatments on mechanical property and corrosion behavior of spray formed 7055 aluminium alloy [J]. J. Alloys Compd., 2018, 735: 261
doi: 10.1016/j.jallcom.2017.11.070
[20] BjØrneklett B I, Ø Grong, Myhr O R, et al. Additivity and isokinetic behaviour in relation to particle dissolution [J]. Acta Mater., 1998, 46: 6257
doi: 10.1016/S1359-6454(98)00260-2
[21] Ø Grong, Myhr O R. Additivity and isokinetic behaviour in relation to diffusion controlled growth [J]. Acta Mater., 2000, 48: 445
doi: 10.1016/S1359-6454(99)00360-2
[22] Myhr O R, Ø Grong. Modelling of non-isothermal transformations in alloys containing a particle distribution [J]. Acta Mater., 2000, 48: 1605
doi: 10.1016/S1359-6454(99)00435-8
[23] Khalfallah A, Raho A A, Amzert S, et al. Precipitation kinetics of GP zones, metastable η′ phase and equilibrium η phase in Al-5.46wt.%Zn-1.67wt.%Mg alloy [J]. Trans. Nonferrous Met. Soc. China, 2019, 29: 233
[24] Su R M, Qu Y D, Li R D. Pre-aging of retrogression and re-aging of spray formed 7075 alloy [J]. Acta Metall. Sin., 2014, 50: 863
[24] (苏睿明, 曲迎东, 李荣德. 喷射态7075合金回归再时效中预时效的研究 [J]. 金属学报, 2014, 50: 863)
[25] Panigrahi S K, Jayaganthan R. Influence of solutes and second phase particles on work hardening behavior of Al 6063 alloy processed by cryorolling [J]. Mater. Sci. Eng., 2011, A528: 3147
[26] Han N M, Zhang X M, Liu S D, et al. Effects of pre-stretching and ageing on the strength and fracture toughness of aluminum alloy 7050 [J]. Mater. Sci. Eng., 2011, A528: 3714
[1] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[2] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[3] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[5] 王韬, 龙弟均, 余黎明, 刘永长, 李会军, 王祖敏. 超高压烧结制备14Cr-ODS钢及微观组织与力学性能[J]. 金属学报, 2022, 58(2): 184-192.
[6] 沈国慧, 胡斌, 杨占兵, 罗海文. 回火温度对含 δ 铁素体高铝中锰钢力学性能和显微组织的影响[J]. 金属学报, 2022, 58(2): 165-174.
[7] 侯嘉鹏, 孙朋飞, 王强, 张振军, 张哲峰. 突破强度-导电率制约关系:晶粒异构设计[J]. 金属学报, 2022, 58(11): 1467-1477.
[8] 赵永好, 毛庆忠. 纳米金属结构材料的韧化[J]. 金属学报, 2022, 58(11): 1385-1398.
[9] 张旭, 田谨, 薛敏涛, 江峰, 李苏植, 张博召, 丁俊, 李小平, 马恩, 丁向东, 孙军. 2000℃高温高承载的Ta-W难熔合金[J]. 金属学报, 2022, 58(10): 1253-1260.
[10] 王硕, 王俊升. Al-Li合金中 δ′/θ′/δ复合沉淀相结构演化及稳定性的第一性原理探究[J]. 金属学报, 2022, 58(10): 1325-1333.
[11] 孙士杰, 田艳中, 张哲峰. 析出强化Fe53Mn15Ni15Cr10Al4Ti2C1 高熵合金强韧化机制[J]. 金属学报, 2022, 58(1): 54-66.
[12] 李文文, 陈波, 熊华平, 尚泳来, 毛唯, 程耀永. 第二代单晶高温合金DD6高性能钎焊接头的组织及力学性能[J]. 金属学报, 2021, 57(8): 959-966.
[13] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[14] 王慧远, 夏楠, 布如宇, 王珵, 查敏, 杨治政. 低合金化高性能变形镁合金研究现状及展望[J]. 金属学报, 2021, 57(11): 1429-1437.
[15] 张林, 郭晓, 高建文, 邓安元, 王恩刚. 电磁搅拌对TiB2颗粒增强钢组织和力学性能的影响[J]. 金属学报, 2020, 56(9): 1239-1246.