|
|
Al-Li合金中 δ′/θ′/δ′复合沉淀相结构演化及稳定性的第一性原理探究 |
王硕1, 王俊升1,2( ) |
1.北京理工大学 材料学院 北京 100081 2.北京理工大学 前沿交叉科学研究院 北京 100081 |
|
Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study |
WANG Shuo1, WANG Junsheng1,2( ) |
1.School of Materials, Beijing Institute of Technology, Beijing 100081, China 2.Advanced Research Institute for Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China |
引用本文:
王硕, 王俊升. Al-Li合金中 δ′/θ′/δ′复合沉淀相结构演化及稳定性的第一性原理探究[J]. 金属学报, 2022, 58(10): 1325-1333.
Shuo WANG,
Junsheng WANG.
Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. Acta Metall Sin, 2022, 58(10): 1325-1333.
1 |
Zhang P, Chen M H. Progress in characterization methods for thermoplastic deforming constitutive models of Al-Li alloys: A review [J]. J. Mater. Sci., 2020, 55: 9828
doi: 10.1007/s10853-020-04682-8
|
2 |
Decreus B, Deschamps A, De Geuser F, et al. The influence of Cu/Li ratio on precipitation in Al-Cu-Li-x alloys [J]. Acta Mater., 2013, 61: 2207
doi: 10.1016/j.actamat.2012.12.041
|
3 |
Miao J S, Sutton S, Luo A A. Microstructure and hot deformation behavior of a new aluminum-lithium-copper based AA2070 alloy [J]. Mater. Sci. Eng., 2020, A777: 139048
|
4 |
Kilmer R J, Stoner G E. Effect of Zn additions on precipitation during aging of alloy 8090 [J]. Scr. Metall. Mater., 1991, 25: 243
doi: 10.1016/0956-716X(91)90388-H
|
5 |
Meng L, Zheng X L. Overview of the effects of impurities and rare earth elements in Al-Li alloys [J]. Mater. Sci. Eng., 1997, A237: 109
|
6 |
Vasudévan A K, Fricke W G, Malcolm R C, et al. On through thickness crystallographic texture gradient in Al-Li-Cu-Zr alloy [J]. Metall. Trans., 1988, 19A: 731
|
7 |
Zhao T Z, Jin L, Xu Y, et al. Anisotropic yielding stress of 2198 Al-Li alloy sheet and mechanisms [J]. Mater. Sci. Eng., 2019, A771: 138572
|
8 |
Kaibyshev R, Shipilova K, Musin F, et al. Continuous dynamic recrystallization in an Al-Li-Mg-Sc alloy during equal-channel angular extrusion [J]. Mater. Sci. Eng., 2005, A396: 341
|
9 |
Liu B, Chen Z, Wang Y X, et al. The effect of an electric field on the mechanical properties and microstructure of Al-Li alloy containing Ce [J]. Mater. Sci. Eng., 2001, A313: 69
|
10 |
Sidhar H, Mishra R S. Aging kinetics of friction stir welded Al-Cu-Li-Mg-Ag and Al-Cu-Li-Mg alloys [J]. Mater. Des., 2016, 110: 60
doi: 10.1016/j.matdes.2016.07.126
|
11 |
Terrones L A H, Monteiro S N. Composite precipitates in a commercial Al-Li-Cu-Mg-Zr alloy [J]. Mater. Charact., 2007, 58: 156
doi: 10.1016/j.matchar.2006.04.008
|
12 |
Deschamps A, Garcia M, Chevy J, et al. Influence of Mg and Li content on the microstructure evolution of Al-Cu-Li alloys during long-term ageing [J]. Acta Mater., 2017, 122: 32
doi: 10.1016/j.actamat.2016.09.036
|
13 |
Gumbmann E, De Geuser F, Sigli C, et al. Influence of Mg, Ag and Zn minor solute additions on the precipitation kinetics and strengthening of an Al-Cu-Li alloy [J]. Acta Mater., 2017, 133: 172
doi: 10.1016/j.actamat.2017.05.029
|
14 |
Mao Z, Chen W, Seidman D N, et al. First-principles study of the nucleation and stability of ordered precipitates in ternary Al-Sc-Li alloys [J]. Acta Mater., 2011, 59: 3012
doi: 10.1016/j.actamat.2011.01.041
|
15 |
Wang S, Zhang C, Wang J S. Structures and properties of nano-precipitates in Al-Li alloys [J]. Aeronaut. Manuf. Technol., 2021, 64: 68
|
15 |
王 硕, 张 弛, 王俊升. 铝锂合金纳米析出相结构与性能综述 [J]. 航空制造技术, 2021, 64: 68
|
16 |
Wang S, Zhang C, Li X, et al. Heterophase interface dominated deformation and mechanical properties in Al-Cu-Li Alloys [J]. Adv. Theory Simul., 2021, 4: 2100059
doi: 10.1002/adts.202100059
|
17 |
Duan S Y, Wu C L, Gao Z, et al. Interfacial structure evolution of the growing composite precipitates in Al-Cu-Li alloys [J]. Acta Mater., 2017, 129: 352
doi: 10.1016/j.actamat.2017.03.018
|
18 |
Wang S, Zhang C, Li X, et al. First-principle investigation on the interfacial structure evolution of the δ'/θ'/δ' composite precipitates in Al-Cu-Li alloys [J]. J. Mater. Sci. Technol., 2020, 58: 205
doi: 10.1016/j.jmst.2020.03.065
|
19 |
Wang S, Zhang C, Li X, et al. Uncovering the influence of Cu on the thickening and strength of the δ'/θ'/δ' nano-composite precipitate in Al-Cu-Li alloys [J]. J. Mater. Sci., 2021, 56: 10092
doi: 10.1007/s10853-021-05894-2
|
20 |
Rose J H, Smith J R, Ferrante J. Universal features of bonding in metal [J]. Phys. Rev., 1983, 28B: 1835
|
21 |
Maintz S, Deringer V L, Tchougréeff A L, et al. Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids [J]. J. Comput. Chem., 2013, 34: 2557
doi: 10.1002/jcc.23424
pmid: 24022911
|
22 |
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev., 1996, 54B: 11169
|
23 |
Blöchl P E. Projector augmented-wave method [J]. Phys. Rev., 1994, 50B: 17953
|
24 |
Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations [J]. Phys. Rev., 1976, 13B: 5188
|
25 |
Vaithyanathan V, Wolverton C, Chen L Q. Multiscale modeling of θ′ precipitation in Al-Cu binary alloys [J]. Acta Mater., 2004, 52: 2973
doi: 10.1016/j.actamat.2004.03.001
|
26 |
Wang Y, Liu Z K, Chen L Q, et al. First-principles calculations of β″-Mg5Si6/α-Al interfaces [J]. Acta Mater., 2007, 55: 5934
doi: 10.1016/j.actamat.2007.06.045
|
27 |
Butler K T, Gautam G S, Canepa P. Designing interfaces in energy materials applications with first-principles calculations [J]. npj Comput. Mater., 2019, 5: 19
doi: 10.1038/s41524-019-0160-9
|
28 |
Zhang S H, Fu Z H, Zhang R F. ADAIS: Automatic derivation of anisotropic ideal strength via high-throughput first-principles computations [J]. Comput. Phys. Commun., 2019, 238: 244
doi: 10.1016/j.cpc.2018.12.012
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|