Please wait a minute...
金属学报  2022, Vol. 58 Issue (10): 1325-1333    DOI: 10.11900/0412.1961.2021.00087
  研究论文 本期目录 | 过刊浏览 |
Al-Li合金中 δ′/θ′/δ复合沉淀相结构演化及稳定性的第一性原理探究
王硕1, 王俊升1,2()
1.北京理工大学 材料学院 北京 100081
2.北京理工大学 前沿交叉科学研究院 北京 100081
Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study
WANG Shuo1, WANG Junsheng1,2()
1.School of Materials, Beijing Institute of Technology, Beijing 100081, China
2.Advanced Research Institute for Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
引用本文:

王硕, 王俊升. Al-Li合金中 δ′/θ′/δ复合沉淀相结构演化及稳定性的第一性原理探究[J]. 金属学报, 2022, 58(10): 1325-1333.
Shuo WANG, Junsheng WANG. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. Acta Metall Sin, 2022, 58(10): 1325-1333.

全文: PDF(2121 KB)   HTML
摘要: 

针对Al-Li合金中的复合沉淀相δ'/θ'/δ'存在的不同位相关系,采用第一性原理方法计算了不同界面结构的形成焓、界面能、解理功和理想解理强度,获得δ'/θ'/δ'在不同生长过程中的稳定界面结构。当θ'相包含奇数Cu层时,δ'/θ'采取反相(anti-phase) a / 2[110]结构;包含偶数Cu层时,δ'/θ'采取同相(in-phase) #2结构。且随着θ'相生长,2种位相通过沿界面[110]方向滑移a / 2实现。同时,δ'相将自发在θ'相上异质形核实现该稳定的δ'/θ'界面结构。基于Rose断裂模型,稳定界面结构拥有最高的黏合强度和理想解理强度。最后,基于界面间键合原子的晶体轨道重叠布居及键长分析,揭示了电子成键和结构稳定性的关系。表明界面间Al—Al键对结构稳定性起主导,且主要源自Al原子3p—3p轨道成键态贡献。

关键词 Al-Li合金复合沉淀相界面能理想强度电子结构第一性原理计算    
Abstract

To obtain the stable interfacial structures of a δ'/θ'/δ' nanocomposite precipitate in Al-Li alloys, the formation enthalpy, interfacial energy, cleavage work, and ideal cleavage strength are calculated for all constructed interface structures at different growth stages. Thus, the results indicate that the δ'/θ'/δ' adopts an anti-phase a /2[110] interfacial structure when the θ' phase contains an odd number of Cu layers; conversely, it adopts an in-phase #2 interfacial structure. As θ' increases, these two structures transform by slipping a /2 along the [110] direction. Simultaneously, the heterogeneous nucleation of δ' achieves the stable δ'/θ' interfacial structure spontaneously. Under Rose's fracture model, this stable interfacial structure also possesses the highest bonding strength and the largest ideal cleavage strength. Finally, the crystal orbital Hamilton population and bond length analyses reveal the relation between the electronic bonding and structural stability. It is shown that the inter Al—Al interactions significantly influence the structural stability, which mainly originated from the 3p—3p orbital-pair contributions.

Key wordsAl-Li alloy    composite precipitate    interfacial energy    ideal strength    electronic structure    first-principles calculation
收稿日期: 2021-02-26     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(52073030)
作者简介: 王 硕,男,1993年生,博士生
图1  δ'/θ'/δ'复合沉淀相中反相和同相结构示意图以及2种同相的界面结构
图2  δ'/θ'/δ'复合沉淀相包含不同层Cu时采用同相#1和同相#2界面结构计算所得的形成焓(ΔH)
图3  δ'/θ'/δ'复合沉淀相由同相#2转变为反相a /2[010]和a /2[110]结构以及转变过程中界面δ'端的原子结构示意图
图4  δ'/θ'/δ'复合沉淀相由同相#2结构转变为反相结构的滑移势能面以及相应的滑移激活能
图5  包含2、3层Cu的δ'/θ'/δ'复合沉淀相采取不同位相关系时的ΔH
图6  求解θ'/δ'界面结构界面能的示意图
StructureS / nm2γsurfaceθ' / (J·m-2)γsurfaceδ' / (J·m-2)γinterface / (J·m-2)
In-phase #20.1651.4010.8940.335
Anti-phase a / 2[010]0.1631.4180.8940.964
Anti-phase a / 2[110]0.1631.4450.846-0.015
表1  3种界面结构的界面面积、界面能以及解理面各相的表面能
图7  3种θ'/δ'界面结构的键能-位移曲线以及对应的解理应力变化曲线
Structuredic / nmGc / (J·m-2)σic / GPa
In-phase #20.0591.94812.356
Anti-phase a / 2[010]0.0501.3419.796
Anti-phase a / 2[110]0.0612.09712.659
表2  基于Rose断裂模型拟合得到的3种界面结构的临界位移(dic),解理功(Gc)以及理想解理应力(σic)
图8  位于3种θ'/δ'界面处不同原子间的成键示意图
StructureLi1—Al2Li1—Al3Al1—Al2Al1—Al3
In-phase #20.2880.2880.2880.288
Anti-phase a / 2[010]0.3860.2710.2620.397
Anti-phase a / 2[110]0.2800.2800.2790.279
表3  位于3种θ′/δ′界面处,不同原子对化学键的键长 (nm)
StructureLi1—Al2Li1—Al3Al1—Al2Al1—Al3
In-phase #20.2560.2561.6551.655
Anti-phase a / 2[010]0.0520.5153.2650.178
Anti-phase a / 2[110]0.2640.2652.0312.031
表4  基于Hamilton矩阵的晶体轨道布局理论,位于3种θ'/δ'界面结构中,不同原子对的积分值(-ICOHP) (eV)
图 9  基于Hamilton举证的晶体轨道布局理论,在反相a /2[110]界面结构中不同分子轨道对Al1—Al2和Li1—Al3原子对成键的贡献值
1 Zhang P, Chen M H. Progress in characterization methods for thermoplastic deforming constitutive models of Al-Li alloys: A review [J]. J. Mater. Sci., 2020, 55: 9828
doi: 10.1007/s10853-020-04682-8
2 Decreus B, Deschamps A, De Geuser F, et al. The influence of Cu/Li ratio on precipitation in Al-Cu-Li-x alloys [J]. Acta Mater., 2013, 61: 2207
doi: 10.1016/j.actamat.2012.12.041
3 Miao J S, Sutton S, Luo A A. Microstructure and hot deformation behavior of a new aluminum-lithium-copper based AA2070 alloy [J]. Mater. Sci. Eng., 2020, A777: 139048
4 Kilmer R J, Stoner G E. Effect of Zn additions on precipitation during aging of alloy 8090 [J]. Scr. Metall. Mater., 1991, 25: 243
doi: 10.1016/0956-716X(91)90388-H
5 Meng L, Zheng X L. Overview of the effects of impurities and rare earth elements in Al-Li alloys [J]. Mater. Sci. Eng., 1997, A237: 109
6 Vasudévan A K, Fricke W G, Malcolm R C, et al. On through thickness crystallographic texture gradient in Al-Li-Cu-Zr alloy [J]. Metall. Trans., 1988, 19A: 731
7 Zhao T Z, Jin L, Xu Y, et al. Anisotropic yielding stress of 2198 Al-Li alloy sheet and mechanisms [J]. Mater. Sci. Eng., 2019, A771: 138572
8 Kaibyshev R, Shipilova K, Musin F, et al. Continuous dynamic recrystallization in an Al-Li-Mg-Sc alloy during equal-channel angular extrusion [J]. Mater. Sci. Eng., 2005, A396: 341
9 Liu B, Chen Z, Wang Y X, et al. The effect of an electric field on the mechanical properties and microstructure of Al-Li alloy containing Ce [J]. Mater. Sci. Eng., 2001, A313: 69
10 Sidhar H, Mishra R S. Aging kinetics of friction stir welded Al-Cu-Li-Mg-Ag and Al-Cu-Li-Mg alloys [J]. Mater. Des., 2016, 110: 60
doi: 10.1016/j.matdes.2016.07.126
11 Terrones L A H, Monteiro S N. Composite precipitates in a commercial Al-Li-Cu-Mg-Zr alloy [J]. Mater. Charact., 2007, 58: 156
doi: 10.1016/j.matchar.2006.04.008
12 Deschamps A, Garcia M, Chevy J, et al. Influence of Mg and Li content on the microstructure evolution of Al-Cu-Li alloys during long-term ageing [J]. Acta Mater., 2017, 122: 32
doi: 10.1016/j.actamat.2016.09.036
13 Gumbmann E, De Geuser F, Sigli C, et al. Influence of Mg, Ag and Zn minor solute additions on the precipitation kinetics and strengthening of an Al-Cu-Li alloy [J]. Acta Mater., 2017, 133: 172
doi: 10.1016/j.actamat.2017.05.029
14 Mao Z, Chen W, Seidman D N, et al. First-principles study of the nucleation and stability of ordered precipitates in ternary Al-Sc-Li alloys [J]. Acta Mater., 2011, 59: 3012
doi: 10.1016/j.actamat.2011.01.041
15 Wang S, Zhang C, Wang J S. Structures and properties of nano-precipitates in Al-Li alloys [J]. Aeronaut. Manuf. Technol., 2021, 64: 68
15 王 硕, 张 弛, 王俊升. 铝锂合金纳米析出相结构与性能综述 [J]. 航空制造技术, 2021, 64: 68
16 Wang S, Zhang C, Li X, et al. Heterophase interface dominated deformation and mechanical properties in Al-Cu-Li Alloys [J]. Adv. Theory Simul., 2021, 4: 2100059
doi: 10.1002/adts.202100059
17 Duan S Y, Wu C L, Gao Z, et al. Interfacial structure evolution of the growing composite precipitates in Al-Cu-Li alloys [J]. Acta Mater., 2017, 129: 352
doi: 10.1016/j.actamat.2017.03.018
18 Wang S, Zhang C, Li X, et al. First-principle investigation on the interfacial structure evolution of the δ'/θ'/δ' composite precipitates in Al-Cu-Li alloys [J]. J. Mater. Sci. Technol., 2020, 58: 205
doi: 10.1016/j.jmst.2020.03.065
19 Wang S, Zhang C, Li X, et al. Uncovering the influence of Cu on the thickening and strength of the δ'/θ'/δ' nano-composite precipitate in Al-Cu-Li alloys [J]. J. Mater. Sci., 2021, 56: 10092
doi: 10.1007/s10853-021-05894-2
20 Rose J H, Smith J R, Ferrante J. Universal features of bonding in metal [J]. Phys. Rev., 1983, 28B: 1835
21 Maintz S, Deringer V L, Tchougréeff A L, et al. Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids [J]. J. Comput. Chem., 2013, 34: 2557
doi: 10.1002/jcc.23424 pmid: 24022911
22 Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev., 1996, 54B: 11169
23 Blöchl P E. Projector augmented-wave method [J]. Phys. Rev., 1994, 50B: 17953
24 Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations [J]. Phys. Rev., 1976, 13B: 5188
25 Vaithyanathan V, Wolverton C, Chen L Q. Multiscale modeling of θ′ precipitation in Al-Cu binary alloys [J]. Acta Mater., 2004, 52: 2973
doi: 10.1016/j.actamat.2004.03.001
26 Wang Y, Liu Z K, Chen L Q, et al. First-principles calculations of β″-Mg5Si6/α-Al interfaces [J]. Acta Mater., 2007, 55: 5934
doi: 10.1016/j.actamat.2007.06.045
27 Butler K T, Gautam G S, Canepa P. Designing interfaces in energy materials applications with first-principles calculations [J]. npj Comput. Mater., 2019, 5: 19
doi: 10.1038/s41524-019-0160-9
28 Zhang S H, Fu Z H, Zhang R F. ADAIS: Automatic derivation of anisotropic ideal strength via high-throughput first-principles computations [J]. Comput. Phys. Commun., 2019, 238: 244
doi: 10.1016/j.cpc.2018.12.012
[1] 皇甫顥, 王子龙, 刘永利, 孟凡顺, 宋久鹏, 祁阳. W1 - x Ir x 固溶合金几何结构、电子结构、力学和热力学性能的第一性原理计算[J]. 金属学报, 2022, 58(2): 231-240.
[2] 毛斐, 吕皓, 唐法威, 郭凯, 刘东, 宋晓艳. MnIn添加对SmCo7结构稳定性及磁矩影响的第一性原理计算[J]. 金属学报, 2021, 57(7): 948-958.
[3] 张海军, 邱实, 孙志梅, 胡青苗, 杨锐. 无序β-Ti1-xNbx合金自由能及弹性性质的第一性原理计算:特殊准无序结构和相干势近似的比较[J]. 金属学报, 2020, 56(9): 1304-1312.
[4] 李师居, 李洋, 陈建强, 李中豪, 许光明, 李勇, 王昭东, 王国栋. 电磁振荡场作用下双辊铸轧制备2099Al-Li合金的偏析行为及组织性能[J]. 金属学报, 2020, 56(6): 831-839.
[5] 蔡超,李煬,李劲风,张昭,张鉴清. 2A97 Al-Li合金薄板时效析出与电位及晶间腐蚀的相关性研究[J]. 金属学报, 2019, 55(8): 958-966.
[6] 黎旺,孙倩,江鸿翔,赵九洲. Al-Bi合金凝固过程及微合金化元素Sn的影响[J]. 金属学报, 2019, 55(7): 831-839.
[7] 李旭,杨庆波,樊祥泽,呙永林,林林,张志清. 变形参数对2195 Al-Li合金动态再结晶的影响[J]. 金属学报, 2019, 55(6): 709-719.
[8] 白静, 石少锋, 王锦龙, 王帅, 赵骧. Ni-Mn-Ga-Ti铁磁形状记忆合金的相稳定性和磁性能的第一性原理计算[J]. 金属学报, 2019, 55(3): 369-375.
[9] 陈丽群, 邱正琛, 于涛. Ru对NiAl[100](010)刃型位错电子结构的影响[J]. 金属学报, 2019, 55(2): 223-228.
[10] 李淑波, 杜文博, 王旭东, 刘轲, 王朝辉. Zr对Mg-Gd-Er合金晶粒细化机理的影响[J]. 金属学报, 2018, 54(6): 911-917.
[11] 董彩虹, 刘永利, 祁阳. 厚度对Bi薄膜表面特性和电学性质的影响[J]. 金属学报, 2018, 54(6): 935-942.
[12] 坚增运, 徐涛, 许军锋, 朱满, 常芳娥. 熔体-结晶相固-液界面能的研究进展[J]. 金属学报, 2018, 54(5): 766-772.
[13] 周刚, 叶荔华, 王皞, 徐东生, 孟长功, 杨锐. 六角结构金属中基面/柱面取向转变的孪晶路径及合金化效应的第一性原理研究[J]. 金属学报, 2018, 54(4): 603-612.
[14] 李双明, 王斌强, 刘振鹏, 钟宏, 胡锐, 刘毅, 罗锡明. 高熔点金属Ir和Mo电子束区熔中不同取向晶体的竞争生长[J]. 金属学报, 2018, 54(10): 1435-1441.
[15] 刘建学, 席文君, 李能, 李树杰. 界面能调控熔体中纳米颗粒分布铝热合成铁基ODS合金[J]. 金属学报, 2017, 53(8): 1011-1017.