|
|
低合金化高性能变形镁合金研究现状及展望 |
王慧远( ), 夏楠, 布如宇, 王珵, 查敏, 杨治政( ) |
吉林大学 材料科学与工程学院 汽车材料教育部重点实验室 长春 130025 |
|
Current Research and Future Prospect on Low-Alloyed High-Performance Wrought Magnesium Alloys |
WANG Huiyuan( ), XIA Nan, BU Ruyu, WANG Cheng, ZHA Min, YANG Zhizheng( ) |
Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun 130025, China |
引用本文:
王慧远, 夏楠, 布如宇, 王珵, 查敏, 杨治政. 低合金化高性能变形镁合金研究现状及展望[J]. 金属学报, 2021, 57(11): 1429-1437.
Huiyuan WANG,
Nan XIA,
Ruyu BU,
Cheng WANG,
Min ZHA,
Zhizheng YANG.
Current Research and Future Prospect on Low-Alloyed High-Performance Wrought Magnesium Alloys[J]. Acta Metall Sin, 2021, 57(11): 1429-1437.
1 |
Song J F, She J, Chen D L, et al. Latest research advances on magnesium and magnesium alloys worldwide [J]. J. Magnes. Alloy., 2020, 8: 1
|
2 |
Wu G H, Chen Y S, Ding W J. Current research and future prospect on microstructures controlling of high performance magnesium alloys during solidification [J]. Acta Metall. Sin., 2018, 54: 637
|
2 |
吴国华,陈玉狮,丁文江. 高性能镁合金凝固组织控制研究现状与展望 [J]. 金属学报, 2018, 54: 637
|
3 |
Zeng Z R, Zhu Y M, Liu R L, et al. Achieving exceptionally high strength in Mg-3Al-1Zn-0.3Mn extrusions via suppressing intergranular deformation [J]. Acta Mater., 2018, 160: 97
|
4 |
Lee S W, Kim S H, Park S H. Microstructural characteristics of AZ31 alloys rolled at room and cryogenic temperatures and their variation during annealing [J]. J. Magnes. Alloy., 2020, 8: 537
|
5 |
Hua Z M, Wang B Y, Wang C, et al. Development of low-alloyed Mg-Zn-Ca-Sn-Mn alloy with high strength-ductility synergy by sub-rapid solidification and hot rolling [J]. J. Alloys Compd., 2021, 855: 157317
|
6 |
Pan H C, Kang R, Li J R, et al. Mechanistic investigation of a low-alloy Mg-Ca-based extrusion alloy with high strength-ductility synergy [J]. Acta Mater., 2020, 186: 278
|
7 |
Nakata T, Xu C, Ajima R, et al. Strong and ductile age-hardening Mg-Al-Ca-Mn alloy that can be extruded as fast as aluminum alloys [J]. Acta Mater., 2017, 130: 261
|
8 |
Shi R H, Miao J S, Avey T, et al. A new magnesium sheet alloy with high tensile properties and room-temperature formability [J]. Sci. Rep., 2020, 10: 10044
|
9 |
Pan H C, Yang C L, Yang Y T, et al. Ultra-fine grain size and exceptionally high strength in dilute Mg-Ca alloys achieved by conventional one-step extrusion [J]. Mater. Lett., 2019, 237: 65
|
10 |
Kim W J, Lee Y G, Lee M J, et al. Exceptionally high strength in Mg-3Al-1Zn alloy processed by high-ratio differential speed rolling [J]. Scr. Mater., 2011, 65: 1105
|
11 |
Ding S X, Lee W T, Chang C P, et al. Improvement of strength of magnesium alloy processed by equal channel angular extrusion [J]. Scr. Mater., 2008, 59: 1006
|
12 |
Zhao G W, Fan J F, Zhang H, et al. Exceptional mechanical properties of ultra-fine grain AZ31 alloy by the combined processing of ECAP, rolling and EPT [J]. Mater. Sci. Eng., 2018, A731: 54
|
13 |
Pan H C, Qin G W, Huang Y M, et al. Development of low-alloyed and rare-earth-free magnesium alloys having ultra-high strength [J]. Acta Mater., 2018, 149: 350
|
14 |
Oh-ishi K, Watanabe R, Mendis C L, et al. Age-hardening response of Mg-0.3at.%Ca alloys with different Zn contents [J]. Mater. Sci. Eng., 2009, A526: 177
|
15 |
Langelier B, Wang X, Esmaeili S. Evolution of precipitation during non-isothermal ageing of an Mg-Ca-Zn alloy with high Ca content [J]. Mater. Sci. Eng., 2012, A538: 246
|
16 |
Oh J C, Ohkubo T, Mukai T, et al. TEM and 3DAP characterization of an age-hardened Mg-Ca-Zn alloy [J]. Scr. Mater., 2005, 53: 675
|
17 |
Ma H T, Yuan R, Xie Y P, et al. The role of Ag, Ca, Zr and Al in strengthening effects of ZK series alloys by altering G.P. zones stability [J]. Acta Mater., 2018, 147: 42
|
18 |
Cihova M, Schäublin R, Hauser L B, et al. Rational design of a lean magnesium-based alloy with high age-hardening response [J]. Acta Mater., 2018, 158: 214
|
19 |
Nie J F. Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys [J]. Scr. Mater., 2003, 48: 1009
|
20 |
Wang F L, Bhattacharyya J J, Agnew S R. Effect of precipitate shape and orientation on Orowan strengthening of non-basal slip modes in hexagonal crystals, application to magnesium alloys [J]. Mater. Sci. Eng., 2016, A666: 114
|
21 |
Fan H D, Zhu Y X, El-Awady J A, et al. Precipitation hardening effects on extension twinning in magnesium alloys [J]. Int. J. Plast., 2018, 106: 186
|
22 |
Hidalgo-Manrique P, Robson J D, Pérez-Prado M T. Precipitation strengthening and reversed yield stress asymmetry in Mg alloys containing rare-earth elements: A quantitative study [J]. Acta Mater., 2017, 124: 456
|
23 |
Mendis C L, Oh-ishi K, Ohkubo T, et al. Precipitation of prismatic plates in Mg-0.3Ca alloys with In additions [J]. Scr. Mater., 2011, 64: 137
|
24 |
Bian M Z, Sasaki T T, Nakata T, et al. Bake-hardenable Mg-Al-Zn-Mn-Ca sheet alloy processed by twin-roll casting [J]. Acta Mater., 2018, 158: 278
|
25 |
Hua Z M, Li M X, Wang C, et al. Pre-strain mediated fast natural aging in a dilute Mg-Zn-Ca-Sn-Mn alloy [J]. Scr. Mater., 2021, 200: 113924
|
26 |
Xiao L R, Chen X F, Cao Y, et al. Solute segregation assisted nanocrystallization of a cold-rolled Mg-Ag alloy during annealing [J]. Scr. Mater., 2020, 177: 69
|
27 |
Hwang J H, Zargaran A, Park G, et al. Effect of 1Al addition on deformation behavior of Mg [J]. J. Magnes. Alloy., 2021, 9: 489
|
28 |
Sabat R K, Brahme A P, Mishra R K, et al. Ductility enhancement in Mg-0.2%Ce alloys [J]. Acta Mater., 2018, 161: 246
|
29 |
Li J R, Zhang A Y, Pan H C, et al. Effect of extrusion speed on microstructure and mechanical properties of the Mg-Ca binary alloy [J]. J. Magnes. Alloy., 2021, 9: 1297
|
30 |
Xia N, Wang C, Gao Y P, et al. Enhanced ductility of Mg-1Zn-0.2Zr alloy with dilute Ca addition achieved by activation of non-basal slip and twinning [J]. Mater. Sci. Eng., 2021, A813: 141128
|
31 |
Yan H, Chen R S, Zheng N, et al. Effects of trace Gd concentration on texture and mechanical properties of hot-rolled Mg-2Zn-xGd sheets [J]. J. Magnes. Alloy., 2013, 1: 23
|
32 |
Zhao T S, Hu Y B, He B, et al. Effect of manganese on microstructure and properties of Mg-2Gd magnesium alloy [J]. Mater. Sci. Eng., 2019, A765: 138292
|
33 |
Lu W L, Yue R, Miao H W, et al. Enhanced plasticity of magnesium alloy micro-tubes for vascular stents by double extrusion with large plastic deformation [J]. Mater. Lett., 2019, 245: 155
|
34 |
Zhu G M, Wang L Y, Zhou H, et al. Improving ductility of a Mg alloy via non-basal <a> slip induced by Ca addition [J]. Int. J. Plast., 2019, 120: 164
|
35 |
Zhang Y, Jiang H T, Kang Q, et al. Microstructure evolution and mechanical property of Mg-3Al alloys with addition of Ca and Gd during rolling and annealing process [J]. J. Magnes. Alloy., 2020, 8: 769
|
36 |
Zeng Z R, Bian M Z, Xu S W, et al. Effects of dilute additions of Zn and Ca on ductility of magnesium alloy sheet [J]. Mater. Sci. Eng., 2016, A674: 459
|
37 |
Zeng Z R, Zhu Y M, Xu S W, et al. Texture evolution during static recrystallization of cold-rolled magnesium alloys [J]. Acta Mater., 2016, 105: 479
|
38 |
Wu Z X, Ahmad R, Yin B L, et al. Mechanistic origin and prediction of enhanced ductility in magnesium alloys [J]. Science, 2018, 359: 447
|
39 |
Lentz M, Risse M, Schaefer N, et al. Strength and ductility with {101¯1}-{101¯2} double twinning in a magnesium alloy [J]. Nat. Commun., 2016, 7: 11068
|
40 |
Luo X, Feng Z Q, Yu T B, et al. Transitions in mechanical behavior and in deformation mechanisms enhance the strength and ductility of Mg-3Gd [J]. Acta Mater., 2020, 183: 398
|
41 |
Kim W J, Lee J B, Kim W Y, et al. Microstructure and mechanical properties of Mg-Al-Zn alloy sheets severely deformed by asymmetrical rolling [J]. Scr. Mater., 2007, 56: 309
|
42 |
Su J,Kabir A S H, Sanjari M, et al. Correlation of static recrystallization and texture weakening of AZ31 magnesium alloy sheets subjected to high speed rolling [J]. Mater. Sci. Eng., 2016, A674: 343
|
43 |
Wang C, Ning H, Liu S, et al. Enhanced ductility and strength of Mg-1Zn-1Sn-0.3Y-0.2Ca alloy achieved by novel micro-texture design [J]. Scr. Mater., 2021, 204: 114119
|
44 |
Masuda H, Sato E. Diffusional and dislocation accommodation mechanisms in superplastic materials [J]. Acta Mater., 2020, 197: 235
|
45 |
Hua Z M, Wang B Y, Wang C, et al. Solute segregation assisted superplasticity in a low-alloyed Mg-Zn-Ca-Sn-Mn alloy [J]. Materialia, 2020, 14: 100918
|
46 |
Somekawa H, Singh A, Mukai T, et al. Effect of alloying elements on room temperature tensile ductility in magnesium alloys [J]. Philos. Mag., 2016, 96: 2671
|
47 |
Kim B, Park C H, Kim H S, et al. Grain refinement and improved tensile properties of Mg-3Al-1Zn alloy processed by low-temperature indirect extrusion [J]. Scr. Mater., 2014, 76: 21
|
48 |
Álvarez-Leal M, Orozco-Caballero A, Carreño F, et al. Superplasticity in a commercially extruded ZK30 magnesium alloy [J]. Mater. Sci. Eng., 2018, A710: 240
|
49 |
Watanabe H, Tsutsui H, Mukai T, et al. Deformation mechanism in a coarse-grained Mg-Al-Zn alloy at elevated temperatures [J]. Int. J. Plast., 2001, 17: 387
|
50 |
Lin H K, Huang J C, Langdon T G. Relationship between texture and low temperature superplasticity in an extruded AZ31 Mg alloy processed by ECAP [J]. Mater. Sci. Eng., 2005, A402: 250
|
51 |
Zhang Z R, Xing J, Yang X, et al. Anisotropy of low temperature superplasticity of fine grained magnesium alloy AZ31 processed by multidirectional forging [J]. Mater. Sci. Technol., 2009, 25: 1442
|
52 |
Somekawa H, Singh A. Superior room temperature ductility of magnesium dilute binary alloy via grain boundary sliding [J]. Scr. Mater., 2018, 150: 26
|
53 |
Wang H Y, Zhang H, Xu X Y, et al. Current research and future prospect on microstructure stability of superplastic light alloys [J]. Acta Metall. Sin., 2018, 54: 1618
|
53 |
王慧远, 张 行, 徐新宇等. 超塑性轻合金组织稳定性的研究进展及展望 [J]. 金属学报, 2018, 54: 1618
|
54 |
Kong T, Kwak B J, Kim J, et al. Tailoring strength-ductility balance of caliber-rolled AZ31 Mg alloy through subsequent annealing [J]. J. Magnes. Alloy, 2020, 8: 163
|
55 |
Zhang S Y, Wang C, Ning H, et al. Relieving segregation in twin-roll cast Mg-8Al-2Sn-1Zn alloys via controlled rolling [J]. J. Magnes. Alloy., 2021, 9: 254
|
56 |
Neh K, Ullmann M, Oswald M, et al. Twin roll casting and strip rolling of several magnesium Alloys [J]. Mater. Today: Proc., 2015, 2: S45
|
57 |
Bae J H, Shim M S, Suh B C, et al. Segregation in twin-roll cast Mg alloy and its suppression through alloy design [J]. Mater. Lett., 2014, 132: 361
|
58 |
Lee J H, Lee J U, Kim S H, et al. Dynamic recrystallization behavior and microstructural evolution of Mg alloy AZ31 through high-speed rolling [J]. J. Mater. Sci. Technol., 2018, 34: 1747
|
59 |
Su J, Sanjari M, Kabir A S H, et al. Characteristics of magnesium AZ31 alloys subjected to high speed rolling [J]. Mater. Sci. Eng., 2015, A636: 582
|
60 |
Jiang M G, Xu C, Nakata T, et al. High-speed extrusion of dilute Mg-Zn-Ca-Mn alloys and its effect on microstructure, texture and mechanical properties [J]. Mater. Sci. Eng., 2016, A678: 329
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|