Please wait a minute...
金属学报  2021, Vol. 57 Issue (11): 1429-1437    DOI: 10.11900/0412.1961.2021.00347
  综述 本期目录 | 过刊浏览 |
低合金化高性能变形镁合金研究现状及展望
王慧远(), 夏楠, 布如宇, 王珵, 查敏, 杨治政()
吉林大学 材料科学与工程学院 汽车材料教育部重点实验室 长春 130025
Current Research and Future Prospect on Low-Alloyed High-Performance Wrought Magnesium Alloys
WANG Huiyuan(), XIA Nan, BU Ruyu, WANG Cheng, ZHA Min, YANG Zhizheng()
Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun 130025, China
引用本文:

王慧远, 夏楠, 布如宇, 王珵, 查敏, 杨治政. 低合金化高性能变形镁合金研究现状及展望[J]. 金属学报, 2021, 57(11): 1429-1437.
Huiyuan WANG, Nan XIA, Ruyu BU, Cheng WANG, Min ZHA, Zhizheng YANG. Current Research and Future Prospect on Low-Alloyed High-Performance Wrought Magnesium Alloys[J]. Acta Metall Sin, 2021, 57(11): 1429-1437.

全文: PDF(2067 KB)   HTML
摘要: 

变形镁合金通过调控微观组织、优化变形工艺,提高材料的力学性能,从而具有广泛的应用前景。低合金化镁合金在成形性、耐腐蚀性及轻量化等方面具有较大优势。低合金、高性能成为变形镁合金发展的重要趋势之一。本文重点概述了低合金化高强、高塑、超塑性变形镁合金在合金成分设计、强韧化机制及加工技术等方面的研究进展,并从提高生产效率、扩大应用范围的角度,展望了低合金化变形镁合金的发展趋势。

关键词 变形镁合金低合金化高强度高塑性超塑性    
Abstract

Wrought magnesium alloys have a wide range of applications by controlling the microstructure and optimizing the deformation process to improve the mechanical properties. Low-alloyed magnesium alloys have great advantages in formability, corrosion resistance, and light weight. Moreover, low alloying and high performance have become important trends in the development of wrought magnesium alloys. This study reviews the research progress of low-alloyed, high-strength, high-plasticity, and superplastic wrought magnesium alloys regarding alloy composition design, strengthening and toughening mechanisms, and processing technology. From the perspective of improving production efficiency and expanding application scope, the development trend of low-alloyed wrought magnesium alloys is proposed.

Key wordswrought magnesium alloy    low alloying    high strength    high plasticity    superplasticity
收稿日期: 2021-08-20     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(U19A2084)
AlloyProcessing

Grain size

μm

UTS

MPa

YS

MPa

EL

%

Ref.
Mg-1.0Ca-1.0Al-0.2Zn-0.1MnExtrusion0.3747042511.1[6]
Mg-1.3Al-0.3Ca-0.4MnExtrusion1730628720.0[7]
Mg-1.0Zn-1.0Al-0.5Ca-0.4Mn-0.2CeRolling9.633227025.8[8]
Mg-0.13CaExtrusion1.2730029013.0[9]
Mg-1.02CaExtrusion0.843923772.0[9]
AZ31HRDSR0.64013827.3[10]
AZ31ECAP0.374453729.7[11]
AZ31ECAP1.7838515029.5[12]
AZ31ECAP + rolling-4103785.0[12]
AZ31ECAP + rolling + EPT1.243032012.9[12]
Mg-2Sn-2CaExtrusion0.324604431.2[13]
Mg-2Sn-2CaExtrusion0.484354203.0[13]
Mg-2Sn-2CaExtrusion0.653864145.8[13]
表1  不同方法制备的高强度低合金化变形镁合金[6~13]
图1  低含量Mg-Al-Ca-Mn-Ag合金中平行于基面的单层G.P.区的高分辨透射电镜(HRTEM)像和相应区域的选区电子衍射(SAED)花样
图2  Mg-2.57Ag合金中Ag原子团簇钉扎位错形成纳米超细晶[26]
图3  Mg-3Gd合金中观察到的具有<c + a>位错和变形孪晶的晶粒尺寸分布[40]
图4  不同织构ZTWX1100样品的反极图以及相应的工程应力-应变曲线和加工硬化曲线[43]
AlloyProcessing

Grain size

μm

Temperature

K

Strain rate

s-1

EL

%

Ref.
Mg-1.0Zn-0.45Ca-0.35Sn-0.2MnRolling4.05731.0 × 10-3410[45]
Mg-0.65MnExtrusion3.02981.0 × 10-5140[46]
AZ31Extrusion1.84233.3 × 10-5320[47]
ZK30ExtrusionBimodal7231.0 × 10-2360[48]
AZ31Rolling1306483.0 × 10-5196[49]
AZ31ECAP0.74231.0 × 10-4460[50]
AZ31MDF3.44235.0 × 10-5320[51]
Mg-2.5BiExtrusion3.02981.0 × 10-3170[52]
Mg-2.5BiExtrusion3.02981.0 × 10-5420[52]
表2  不同方法制备的超塑性低合金化变形镁合金[45~52]
图5  ZXTM1000合金拉伸前晶界处的高角环形暗场像和对应的能谱线扫描分析
1 Song J F, She J, Chen D L, et al. Latest research advances on magnesium and magnesium alloys worldwide [J]. J. Magnes. Alloy., 2020, 8: 1
2 Wu G H, Chen Y S, Ding W J. Current research and future prospect on microstructures controlling of high performance magnesium alloys during solidification [J]. Acta Metall. Sin., 2018, 54: 637
2 吴国华,陈玉狮,丁文江. 高性能镁合金凝固组织控制研究现状与展望 [J]. 金属学报, 2018, 54: 637
3 Zeng Z R, Zhu Y M, Liu R L, et al. Achieving exceptionally high strength in Mg-3Al-1Zn-0.3Mn extrusions via suppressing intergranular deformation [J]. Acta Mater., 2018, 160: 97
4 Lee S W, Kim S H, Park S H. Microstructural characteristics of AZ31 alloys rolled at room and cryogenic temperatures and their variation during annealing [J]. J. Magnes. Alloy., 2020, 8: 537
5 Hua Z M, Wang B Y, Wang C, et al. Development of low-alloyed Mg-Zn-Ca-Sn-Mn alloy with high strength-ductility synergy by sub-rapid solidification and hot rolling [J]. J. Alloys Compd., 2021, 855: 157317
6 Pan H C, Kang R, Li J R, et al. Mechanistic investigation of a low-alloy Mg-Ca-based extrusion alloy with high strength-ductility synergy [J]. Acta Mater., 2020, 186: 278
7 Nakata T, Xu C, Ajima R, et al. Strong and ductile age-hardening Mg-Al-Ca-Mn alloy that can be extruded as fast as aluminum alloys [J]. Acta Mater., 2017, 130: 261
8 Shi R H, Miao J S, Avey T, et al. A new magnesium sheet alloy with high tensile properties and room-temperature formability [J]. Sci. Rep., 2020, 10: 10044
9 Pan H C, Yang C L, Yang Y T, et al. Ultra-fine grain size and exceptionally high strength in dilute Mg-Ca alloys achieved by conventional one-step extrusion [J]. Mater. Lett., 2019, 237: 65
10 Kim W J, Lee Y G, Lee M J, et al. Exceptionally high strength in Mg-3Al-1Zn alloy processed by high-ratio differential speed rolling [J]. Scr. Mater., 2011, 65: 1105
11 Ding S X, Lee W T, Chang C P, et al. Improvement of strength of magnesium alloy processed by equal channel angular extrusion [J]. Scr. Mater., 2008, 59: 1006
12 Zhao G W, Fan J F, Zhang H, et al. Exceptional mechanical properties of ultra-fine grain AZ31 alloy by the combined processing of ECAP, rolling and EPT [J]. Mater. Sci. Eng., 2018, A731: 54
13 Pan H C, Qin G W, Huang Y M, et al. Development of low-alloyed and rare-earth-free magnesium alloys having ultra-high strength [J]. Acta Mater., 2018, 149: 350
14 Oh-ishi K, Watanabe R, Mendis C L, et al. Age-hardening response of Mg-0.3at.%Ca alloys with different Zn contents [J]. Mater. Sci. Eng., 2009, A526: 177
15 Langelier B, Wang X, Esmaeili S. Evolution of precipitation during non-isothermal ageing of an Mg-Ca-Zn alloy with high Ca content [J]. Mater. Sci. Eng., 2012, A538: 246
16 Oh J C, Ohkubo T, Mukai T, et al. TEM and 3DAP characterization of an age-hardened Mg-Ca-Zn alloy [J]. Scr. Mater., 2005, 53: 675
17 Ma H T, Yuan R, Xie Y P, et al. The role of Ag, Ca, Zr and Al in strengthening effects of ZK series alloys by altering G.P. zones stability [J]. Acta Mater., 2018, 147: 42
18 Cihova M, Schäublin R, Hauser L B, et al. Rational design of a lean magnesium-based alloy with high age-hardening response [J]. Acta Mater., 2018, 158: 214
19 Nie J F. Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys [J]. Scr. Mater., 2003, 48: 1009
20 Wang F L, Bhattacharyya J J, Agnew S R. Effect of precipitate shape and orientation on Orowan strengthening of non-basal slip modes in hexagonal crystals, application to magnesium alloys [J]. Mater. Sci. Eng., 2016, A666: 114
21 Fan H D, Zhu Y X, El-Awady J A, et al. Precipitation hardening effects on extension twinning in magnesium alloys [J]. Int. J. Plast., 2018, 106: 186
22 Hidalgo-Manrique P, Robson J D, Pérez-Prado M T. Precipitation strengthening and reversed yield stress asymmetry in Mg alloys containing rare-earth elements: A quantitative study [J]. Acta Mater., 2017, 124: 456
23 Mendis C L, Oh-ishi K, Ohkubo T, et al. Precipitation of prismatic plates in Mg-0.3Ca alloys with In additions [J]. Scr. Mater., 2011, 64: 137
24 Bian M Z, Sasaki T T, Nakata T, et al. Bake-hardenable Mg-Al-Zn-Mn-Ca sheet alloy processed by twin-roll casting [J]. Acta Mater., 2018, 158: 278
25 Hua Z M, Li M X, Wang C, et al. Pre-strain mediated fast natural aging in a dilute Mg-Zn-Ca-Sn-Mn alloy [J]. Scr. Mater., 2021, 200: 113924
26 Xiao L R, Chen X F, Cao Y, et al. Solute segregation assisted nanocrystallization of a cold-rolled Mg-Ag alloy during annealing [J]. Scr. Mater., 2020, 177: 69
27 Hwang J H, Zargaran A, Park G, et al. Effect of 1Al addition on deformation behavior of Mg [J]. J. Magnes. Alloy., 2021, 9: 489
28 Sabat R K, Brahme A P, Mishra R K, et al. Ductility enhancement in Mg-0.2%Ce alloys [J]. Acta Mater., 2018, 161: 246
29 Li J R, Zhang A Y, Pan H C, et al. Effect of extrusion speed on microstructure and mechanical properties of the Mg-Ca binary alloy [J]. J. Magnes. Alloy., 2021, 9: 1297
30 Xia N, Wang C, Gao Y P, et al. Enhanced ductility of Mg-1Zn-0.2Zr alloy with dilute Ca addition achieved by activation of non-basal slip and twinning [J]. Mater. Sci. Eng., 2021, A813: 141128
31 Yan H, Chen R S, Zheng N, et al. Effects of trace Gd concentration on texture and mechanical properties of hot-rolled Mg-2Zn-xGd sheets [J]. J. Magnes. Alloy., 2013, 1: 23
32 Zhao T S, Hu Y B, He B, et al. Effect of manganese on microstructure and properties of Mg-2Gd magnesium alloy [J]. Mater. Sci. Eng., 2019, A765: 138292
33 Lu W L, Yue R, Miao H W, et al. Enhanced plasticity of magnesium alloy micro-tubes for vascular stents by double extrusion with large plastic deformation [J]. Mater. Lett., 2019, 245: 155
34 Zhu G M, Wang L Y, Zhou H, et al. Improving ductility of a Mg alloy via non-basal <a> slip induced by Ca addition [J]. Int. J. Plast., 2019, 120: 164
35 Zhang Y, Jiang H T, Kang Q, et al. Microstructure evolution and mechanical property of Mg-3Al alloys with addition of Ca and Gd during rolling and annealing process [J]. J. Magnes. Alloy., 2020, 8: 769
36 Zeng Z R, Bian M Z, Xu S W, et al. Effects of dilute additions of Zn and Ca on ductility of magnesium alloy sheet [J]. Mater. Sci. Eng., 2016, A674: 459
37 Zeng Z R, Zhu Y M, Xu S W, et al. Texture evolution during static recrystallization of cold-rolled magnesium alloys [J]. Acta Mater., 2016, 105: 479
38 Wu Z X, Ahmad R, Yin B L, et al. Mechanistic origin and prediction of enhanced ductility in magnesium alloys [J]. Science, 2018, 359: 447
39 Lentz M, Risse M, Schaefer N, et al. Strength and ductility with {101¯1}-{101¯2} double twinning in a magnesium alloy [J]. Nat. Commun., 2016, 7: 11068
40 Luo X, Feng Z Q, Yu T B, et al. Transitions in mechanical behavior and in deformation mechanisms enhance the strength and ductility of Mg-3Gd [J]. Acta Mater., 2020, 183: 398
41 Kim W J, Lee J B, Kim W Y, et al. Microstructure and mechanical properties of Mg-Al-Zn alloy sheets severely deformed by asymmetrical rolling [J]. Scr. Mater., 2007, 56: 309
42 Su J,Kabir A S H, Sanjari M, et al. Correlation of static recrystallization and texture weakening of AZ31 magnesium alloy sheets subjected to high speed rolling [J]. Mater. Sci. Eng., 2016, A674: 343
43 Wang C, Ning H, Liu S, et al. Enhanced ductility and strength of Mg-1Zn-1Sn-0.3Y-0.2Ca alloy achieved by novel micro-texture design [J]. Scr. Mater., 2021, 204: 114119
44 Masuda H, Sato E. Diffusional and dislocation accommodation mechanisms in superplastic materials [J]. Acta Mater., 2020, 197: 235
45 Hua Z M, Wang B Y, Wang C, et al. Solute segregation assisted superplasticity in a low-alloyed Mg-Zn-Ca-Sn-Mn alloy [J]. Materialia, 2020, 14: 100918
46 Somekawa H, Singh A, Mukai T, et al. Effect of alloying elements on room temperature tensile ductility in magnesium alloys [J]. Philos. Mag., 2016, 96: 2671
47 Kim B, Park C H, Kim H S, et al. Grain refinement and improved tensile properties of Mg-3Al-1Zn alloy processed by low-temperature indirect extrusion [J]. Scr. Mater., 2014, 76: 21
48 Álvarez-Leal M, Orozco-Caballero A, Carreño F, et al. Superplasticity in a commercially extruded ZK30 magnesium alloy [J]. Mater. Sci. Eng., 2018, A710: 240
49 Watanabe H, Tsutsui H, Mukai T, et al. Deformation mechanism in a coarse-grained Mg-Al-Zn alloy at elevated temperatures [J]. Int. J. Plast., 2001, 17: 387
50 Lin H K, Huang J C, Langdon T G. Relationship between texture and low temperature superplasticity in an extruded AZ31 Mg alloy processed by ECAP [J]. Mater. Sci. Eng., 2005, A402: 250
51 Zhang Z R, Xing J, Yang X, et al. Anisotropy of low temperature superplasticity of fine grained magnesium alloy AZ31 processed by multidirectional forging [J]. Mater. Sci. Technol., 2009, 25: 1442
52 Somekawa H, Singh A. Superior room temperature ductility of magnesium dilute binary alloy via grain boundary sliding [J]. Scr. Mater., 2018, 150: 26
53 Wang H Y, Zhang H, Xu X Y, et al. Current research and future prospect on microstructure stability of superplastic light alloys [J]. Acta Metall. Sin., 2018, 54: 1618
53 王慧远, 张 行, 徐新宇等. 超塑性轻合金组织稳定性的研究进展及展望 [J]. 金属学报, 2018, 54: 1618
54 Kong T, Kwak B J, Kim J, et al. Tailoring strength-ductility balance of caliber-rolled AZ31 Mg alloy through subsequent annealing [J]. J. Magnes. Alloy, 2020, 8: 163
55 Zhang S Y, Wang C, Ning H, et al. Relieving segregation in twin-roll cast Mg-8Al-2Sn-1Zn alloys via controlled rolling [J]. J. Magnes. Alloy., 2021, 9: 254
56 Neh K, Ullmann M, Oswald M, et al. Twin roll casting and strip rolling of several magnesium Alloys [J]. Mater. Today: Proc., 2015, 2: S45
57 Bae J H, Shim M S, Suh B C, et al. Segregation in twin-roll cast Mg alloy and its suppression through alloy design [J]. Mater. Lett., 2014, 132: 361
58 Lee J H, Lee J U, Kim S H, et al. Dynamic recrystallization behavior and microstructural evolution of Mg alloy AZ31 through high-speed rolling [J]. J. Mater. Sci. Technol., 2018, 34: 1747
59 Su J, Sanjari M, Kabir A S H, et al. Characteristics of magnesium AZ31 alloys subjected to high speed rolling [J]. Mater. Sci. Eng., 2015, A636: 582
60 Jiang M G, Xu C, Nakata T, et al. High-speed extrusion of dilute Mg-Zn-Ca-Mn alloys and its effect on microstructure, texture and mechanical properties [J]. Mater. Sci. Eng., 2016, A678: 329
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[3] 王韬, 龙弟均, 余黎明, 刘永长, 李会军, 王祖敏. 超高压烧结制备14Cr-ODS钢及微观组织与力学性能[J]. 金属学报, 2022, 58(2): 184-192.
[4] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[5] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[6] 刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[7] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[8] 胡宽辉, 毛新平, 周桂峰, 刘静, 王志奋. Si和Mn含量对超高强度热成形钢组织和性能的影响[J]. 金属学报, 2018, 54(8): 1105-1112.
[9] 黄俊, 罗海文. 退火工艺对含Nb高强无取向硅钢组织及性能的影响[J]. 金属学报, 2018, 54(3): 377-384.
[10] 谢广明, 马宗义, 薛鹏, 骆宗安, 王国栋. 工具转速对搅拌摩擦加工Mg-Zn-Y-Zr耐热镁合金超塑性行为的影响[J]. 金属学报, 2018, 54(12): 1745-1755.
[11] 王慧远, 张行, 徐新宇, 查敏, 王珵, 马品奎, 管志平. 超塑性轻合金组织稳定性的研究进展及展望[J]. 金属学报, 2018, 54(11): 1618-1624.
[12] 惠亚军,潘辉,李文远,刘锟,陈斌,崔阳. 1000 MPa级Nb-Ti微合金化超高强度钢加热制度研究[J]. 金属学报, 2017, 53(2): 129-139.
[13] 孙敏,李晓刚,李劲. 新型超高强度钢Cr12Ni4Mo2Co14在酸性环境中的应力腐蚀行为*[J]. 金属学报, 2016, 52(11): 1372-1378.
[14] 杨超,王继杰,马宗义,倪丁瑞,付明杰,李晓华,曾元松. 7B04铝合金薄板的搅拌摩擦焊接及接头低温超塑性研究*[J]. 金属学报, 2015, 51(12): 1449-1456.
[15] 徐平光,殷匠,张书彦. 充氢超高强度钢拉伸变形的原位中子衍射研究*[J]. 金属学报, 2015, 51(11): 1297-1305.