Please wait a minute...
金属学报  2009, Vol. 45 Issue (5): 605-609    
  论文 本期目录 | 过刊浏览 |
LaCoO3涂层对SUS 430合金连接体中温氧化行为的影响
华斌1;张建福2;卢凤双2;孔永红1;蒲健1;李箭1
1. 华中科技大学材料科学与工程学院材料成形与模具技术国家重点实验室; 武汉 430074
2. 北京钢铁研究总院; 北京 100081
EFFECT OF LaCoO3 COATING ON THE INTERMEDIATE TEMPERATURE OXIDATION BEHAVIOR OF SUS 430 METALLIC INTERCONNECT
HUA Bin 1; ZHANG Jianfu 2; LU Fengshuang 2; KONG Yonghong 1; PU Jian 1; LI Jian 1
1. College of Materials Science and Engineering; State Key Laboratory of Material Processing and Die & Mould Technology; Huazhong University of Science & Technology; Wuhan 430074
2. Central Iron & Steel Research Institute; Beijing 100081
引用本文:

华斌 张建福 卢凤双 孔永红 蒲健 李箭. LaCoO3涂层对SUS 430合金连接体中温氧化行为的影响[J]. 金属学报, 2009, 45(5): 605-609.
, , , , , . EFFECT OF LaCoO3 COATING ON THE INTERMEDIATE TEMPERATURE OXIDATION BEHAVIOR OF SUS 430 METALLIC INTERCONNECT[J]. Acta Metall Sin, 2009, 45(5): 605-609.

全文: PDF(1117 KB)  
摘要: 

通过溶胶--凝胶提拉法在SUS 430合金表面施加LaCoO3钙钛矿导电涂层, 并研究其对固体氧化物燃料电池(SOFC)金属连接体SUS 430合金中温氧化行为的影响. 利用X射线衍射(XRD)、扫描电子显微镜(SEM)以及能谱仪(EDS)对施加涂层合金的氧化物相结构与微观形貌进行表征, 并采用“4点法”测量施加涂层合金表面氧化膜的面比电阻(ASR).750 ℃空气中的循环氧化结果表明, 施加LaCoO3涂层合金的氧化动力学曲线遵循抛物线规律,氧化速率常数K为4.18×10-15 g2/(cm4•s),比与未施加涂层合金降低了1---2个数量级;LaCoO3涂层有效地抑制了Cr2O3相的形成, 减缓了MnCr2O4尖晶石的生长. 最终使得SUS 430合金的氧化抗力和氧化后的导电性得到增强.

关键词 固体氧化物燃料电池(SOFC)金属连接体LaCoO3氧化面比电阻    
Abstract

Low costly ferritic stainless steels, especially the Cr2O3–forming alloys, are promising interconnect materials for solid oxide fuel cells (SOFCs) due to their thermal expansion compatibility with other cell components. However, the oxidation resistance of commercial ferritic stainless steels in the operating temperature range of 600—800 ℃ is not adequate, forming relatively thick, poorly conducting oxide scale on the surface of the stainless steel interconnect and decreasing the cell performance. Surface modification is necessary to improve the oxidation behavior and electrical property. The present study investigates the effect of a LaCoO3 protective coating by the sol–gel process on the intermediate temperature oxidation behavior of SUS 430 alloy, which is frequently considered as the interconnect material for SOFCs. X–ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to characterize the phase structure, surface morphology and composition of the coating and the oxide scale. The "4–probe" method was employed to determine the area specific resistance (ASR) of the surface oxides. Long–term thermally cyclic oxidation at 750 ℃in air has shown that the oxidation kinetics obeys the parabolic rule with a rate constant of K=4.18×10−15 g2/(cm4·s), which is 1—2 orders of magnitude lower than that of the uncoated alloy, the LaCoO3 protective coating effectively suppresses the formation of Cr2O3 and slows down the growth of MnCr2O4 spinel. As a result, the oxidation resistance and electrical conductivity of the coated SUS 430 alloy are significantly enhanced, resulting in an ASR at 750 ℃of only 3.13 m·cm2 after oxidation at 750 ℃ for 850 h in air and an extrapolated ASR of 21.5 m·cm2 for 4×104 h oxidation.

Key wordssolid oxide fuel cell (SOFC)    metallic interconnect    LaCoO3    oxidation    area specific resistance (ASR)
收稿日期: 2008-10-20     
ZTFLH: 

TG146

 
基金资助:

国家高技术研究发展计划项目 2006AA03Z227和国家自然科学基金项目50771048资助

作者简介: 华斌, 男, 1981年生, 博士生

1] Fergus J W. Mater Sci Eng, 2005; A397: 271
[2] Huang K, Hou P Y, Goodenough J B. Solid State Ionics, 2000; 129: 237
[3] Brylewski T, Nanko M, Maruyama T, Przybylski K. Solid State Ionics, 2001; 143: 131
[4] Horita T, Xiong Y, Yamaji K, Sakai N, Yokokawa H. J Electrochem Soc, 2003; 150A: 243
[5] Kurokawa H, Kawamura K, Maruyama T. Solid State Ionics , 2004; 168: 13
[6] Yang Z, Hardy J S,Walker M S, Xia G, Simner S P, Stevenson J W. J Electrochem Soc, 2004; 151A: 1825
[7] Simner S P, Anderson M D, Xia G G, Yang Z, Pederson L R, Stevenson J W. J Electrochem Soc, 2005; 152A: 740
[8] Pu J, Li J, Hua B, Xie G. J Power Sources, 2006; 158: 354
[9] Jiang S P, Zhang S, Zhen Y D. J Mater Res, 2005; 20: 747
[10] Jiang S P, Zhen Y D, Zhang S. J Electrochem Soc, 2006; 153A: 151
[11] Hilpert K, Das D, Miller M, Peck D H, Weiss R. J Electrochem Soc, 1996; 143: 3642
[12] Stanislowski M,Wessel E, Hilpert K, Markus T, Singheiser L. J Electrochem Soc, 2007; 154A: 295
[13] Fergus J W. Solid State Ionics, 2004; 171: 1
[14] Zhu J H, Zhang Y, Basu A, Lu Z G, Paranthaman M, Lee D F, Payzant E A. Surf Coat Technol, 2004; 177–178: 65
[15] Kim J H, Song R H, Hyun S H. Solid State Ionics, 2004; 174: 185
[16] Chu C L, Wang J Y, Lee S. Int J Hydrogen Energy, 2008; 33: 2536
[17] Stanislowski M, Froitzheim J, Niewolak L, Quadakkers W J, Hilpert K, Markus T, Singheiser L. J Power Sources, 2007; 164: 578
[18] Qu W, Li J, Ivey D G. J Power Sources, 2004; 138: 162
[19] Qu W, Li J, Ivey D G, Hill J M. J Power Sources, 2006; 157: 335
[20] Lobnig R E, Schmidt H P, Hennesen K. Oxide Met, 1992; 37: 81

[1] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[2] 黄鼎, 乔岩欣, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 基体表面喷丸处理对纳米晶涂层循环氧化行为的影响[J]. 金属学报, 2023, 59(5): 668-678.
[3] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[4] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[5] 李昕, 江河, 姚志浩, 董建新. O原子对高温合金基体NiCoNiCr晶界作用的理论计算分析[J]. 金属学报, 2023, 59(2): 309-318.
[6] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[7] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[8] 胡敏, 周生玉, 国京元, 胡明昊, 李冲, 李会军, 王祖敏, 刘永长. 多相Ni3Al基高温合金微区氧化行为[J]. 金属学报, 2023, 59(10): 1346-1354.
[9] 金鑫焱, 储双杰, 彭俊, 胡广魁. 露点对连续退火0.2%C-1.5%Si-2.5%Mn高强钢选择性氧化及脱碳的影响[J]. 金属学报, 2023, 59(10): 1324-1334.
[10] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[11] 丛鸿达, 王金龙, 王成, 宁珅, 高若恒, 杜瑶, 陈明辉, 朱圣龙, 王福会. 新型无机硅酸盐复合涂层制备及其在高温水蒸气环境的氧化行为[J]. 金属学报, 2022, 58(8): 1083-1092.
[12] 孙蓉蓉, 姚美意, 林晓冬, 张文怀, 仇云龙, 胡丽娟, 谢耀平, 杨健, 董建新, 成国光. 添加TiFe22Cr5Al3Mo合金在500℃过热蒸汽中腐蚀行为的影响[J]. 金属学报, 2022, 58(5): 610-622.
[13] 赵晓峰, 李玲, 张晗, 陆杰. 热障涂层高熵合金粘结层材料研究进展[J]. 金属学报, 2022, 58(4): 503-512.
[14] 苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.
[15] 彭俊, 金鑫焱, 钟勇, 王利. 基板表层组织对Fe-16Mn-0.7C-1.5Al TWIP钢可镀性的影响[J]. 金属学报, 2022, 58(12): 1600-1610.