Please wait a minute...
金属学报  2009, Vol. 45 Issue (5): 597-604    
  论文 本期目录 | 过刊浏览 |
Cu--0.23%Al2O3弥散强化铜合金的高温变形特性研究
申坤1;汪明朴1;郭明星2;李树梅1
1. 中南大学材料科学与工程学院; 长沙410083
2. Laboratory for Mechanical Metallurgy; Institut des Mat$\acuteeriaux; Ecole Polytechnique Federale de Lausanne (EPFL); Lausanne; Switzerland
STUDY ON HIGH TEMPERATURE DEFORMATION CHARACTERISTICS OF Cu–0.23%Al2O3 DISPERSION–STRENGTHENED COPPER ALLOY
SHEN Kun 1; WANG Mingpu 1; GUO Mingxing 2; LI Shumei 1
1) School of Materials Science and Engineering; Central South University; Changsha 410083
2) Laboratory for Mechanical Metallurgy; Institut des Mat´eriaux; Ecole Polytechnique F´ed´erale de Lausanne (EPFL);
Lausanne; Switzerland
引用本文:

申坤 汪明朴 郭明星 李树梅. Cu--0.23%Al2O3弥散强化铜合金的高温变形特性研究[J]. 金属学报, 2009, 45(5): 597-604.
, , , . STUDY ON HIGH TEMPERATURE DEFORMATION CHARACTERISTICS OF Cu–0.23%Al2O3 DISPERSION–STRENGTHENED COPPER ALLOY[J]. Acta Metall Sin, 2009, 45(5): 597-604.

全文: PDF(1406 KB)  
摘要: 

利用Gleeble--1500热模拟机、金相以及透射电镜对Cu--0.23%Al2O3(体积分数)合金高温塑性变形过程中的流变应力和显微组织变化规律进行了研究. 研究结果表明, Cu--0.23%Al2O3合金在热压缩过程中,热压缩条件不同流变应力变化规律会有所差异. 此外, 还求得了该合金高温变形的平均激活能和其他相关材料常数, 据此建立了峰值屈服应力--应变速率--温度之间的本构方程. 随热压缩温度的升高, 基体内动态再结晶晶粒尺寸和数量不断增加, 而在同一温度压缩时, 随应变速率的增加,组织分布不均匀性有所增加, 亚晶尺寸不断减小, 位错密度先增加后降低.

关键词 Cu--Al2O3合金 高温变形 本构方程 动态回复 动态再结晶    
Abstract

In order to deeply understand the high temperature deformation behaviors of Cu–0.23%Al2O3 (volume fraction) alloy, the changes of flow stress and microstructure for this alloy after deformation at high temperatures were investigated by using the Gleeble–1500 hot simulator, metallographic microscope and transmission electron microscope. The results show that the flow stress will change significantly with the thermal compression conditions and is mainly divided into three different stages. In addition, the average activation energy and other material parameters of this alloy deformed at high temperatures were obtained, based on them, the constitutive equation of the peak value yield stress–strain rate–temperature was also established. With increasing of compression temperature, the size and number of dynamic recrystallization grains are increased. However in the case of isothermal compression, with increasing of strain rates, the evolution of metallographical microstructures becomes disequilibrium, the size of subgrain is gradually decreased to about 0.5—1 μm, and the dislocation density is increased at first, and then decreased.

Key wordsCu–Al2O3 alloy    high temperature deformation    constitutive equation    dynamic recovery    dynamic recrystallization
收稿日期: 2008-10-15     
ZTFLH: 

TG111.7

 
基金资助:

国家高技术研究发展计划项目2002AA302505和2006AA03Z517资助

作者简介: 申坤, 女, 1984年生, 硕士生

[1] Lee J, Kim Y C, Lee S, Ahn S H, Kim N J. Metall Mater Trans, 2004; 35A: 493
[2] Guo M X, Wang M P, Li Z, Cao L F, Cheng J Y. Mater Mech Eng, 2005; 29(4): 1
(郭明星, 汪明朴, 李周, 曹玲飞, 程建奕. 机械工程材料, 2005; 29(4): 1)
[3] Perez J E, Morris D G. Scr Metall Mater, 1994; 31: 231
[4] Shi Z Y, Wang D Q. J Mater Sci Lett, 1998; 17: 477
[5] Rajkovic V M, Mitkov M V. Int J Powder Metall, 2000; 36: 45
[6] Guo M X, Wang M P, Shen K, Cao L F, Li Z, Zhang Z. J Alloys Compd, 2008; 460: 585
[7] Poul B, Kapoor R, Chakrararty J K, Bidaye A C, Sharma I G, Suri A K. Scr Mater, 2009; 60: 104
[8] Guo M X, Wang M P, Cao L F, Lei R S. Mater Charact, 2007; 58: 928
[9] Jonas J J, Sellars C M, Tegart W J M. Strength and Structure Under Hot–Working Conditions. London: Iron and Steel Institute, 1968: 49
[10] Poirier J P, translated by Guan D L. Plastic Deformation of Crystal at High Temperature. Dalian: Dalian Science and Technology University Press, 1989: 11
(Poirier J P著, 关德林译. 晶体高温塑性变形. 大连: 大连理工大学出版社, 1989: 11)
[11] Broyles S E, Anderson K R, Groza J R, Gibeling J C. Metall Mater Trans, 1996; 27A: 1217

[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[3] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[4] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[5] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[6] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[7] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[8] 刘庆琦, 卢晔, 张翼飞, 范笑锋, 李瑞, 刘兴硕, 佟雪, 于鹏飞, 李工. Al19.3Co15Cr15Ni50.7高熵合金的热变形行为[J]. 金属学报, 2021, 57(10): 1299-1308.
[9] 赵嫚嫚, 秦森, 冯捷, 代永娟, 国栋. AlNi1Cr9Al(1~3)Ni(1~7)WVNbB钢热变形行为的影响[J]. 金属学报, 2020, 56(7): 960-968.
[10] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[11] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
[12] 武华健, 程仁山, 李景仁, 谢东升, 宋锴, 潘虎成, 秦高梧. Al含量对Mg-Sn-Ca合金微观组织与力学性能的影响[J]. 金属学报, 2020, 56(10): 1423-1432.
[13] 张勇, 李鑫旭, 韦康, 万志鹏, 贾崇林, 王涛, 李钊, 孙宇, 梁红艳. 850 ℃涡轮盘用新型变形高温合金GH4975挤压棒材热变形规律研究[J]. 金属学报, 2020, 56(10): 1401-1410.
[14] 刘杨,王磊,宋秀,梁涛沙. DD407/IN718高温合金异质焊接接头的组织及高温变形行为[J]. 金属学报, 2019, 55(9): 1221-1230.
[15] 李旭,杨庆波,樊祥泽,呙永林,林林,张志清. 变形参数对2195 Al-Li合金动态再结晶的影响[J]. 金属学报, 2019, 55(6): 709-719.