Please wait a minute...
金属学报  2009, Vol. 45 Issue (3): 285-291    
  论文 本期目录 | 过刊浏览 |
 应变速率对奥氏体不锈钢应变诱发α'--马氏体转变和力学行为的影响
刘伟1;李志斌2;王翔3;邹骅1;王立新2
1 北京交通大学机械与电子控制工程学院; 北京 100044
2 太原钢铁(集团)有限公司; 太原 030003
3 Department of Materials Science and Engineering; McMaster University; Hamilton; ON.; L8S 4L7; Canada
EFFECT OF STRAIN RATE ON STRAIN INDUCED α'--MARTENSITE TRANSFORMATION AND MECHANICAL RESPONSE OF AUSTENITIC STAINLESS STEELS
LIU Wei 1;LI Zhibin2; WANG Xiang3;ZOU Hua1;WANG Lixin2
1 School of Mechanical; Electronic and Control Engineering; Beijing Jiaotong University; Beijing 100044
2 Taiyuan Iron and Steel (Group) Co.; Taiyuan 030003
3 Department of Materials Science and Engineering; McMaster University; Hamilton; ON.; L8S 4L7; Canada
引用本文:

刘伟 李志斌 王翔 邹骅 王立新.  应变速率对奥氏体不锈钢应变诱发α'--马氏体转变和力学行为的影响[J]. 金属学报, 2009, 45(3): 285-291.
. EFFECT OF STRAIN RATE ON STRAIN INDUCED α'--MARTENSITE TRANSFORMATION AND MECHANICAL RESPONSE OF AUSTENITIC STAINLESS STEELS[J]. Acta Metall Sin, 2009, 45(3): 285-291.

全文: PDF(1259 KB)  
摘要: 

以5×10-4 s-1(慢速拉伸)和2×10-2 s-1(快速拉伸) 2种应变速率对EN1.4318 (AISI301L)和EN1.4301(AISI304)冷轧和退火态奥氏体不锈钢板试样(厚度为2 mm)进行了拉伸实验, 用TEM, SEM以及XRD分析应变诱发 α'--马氏体转变机制和转变量. 结果表明, 相同应变速率拉伸时, EN1.4318钢的α'--马氏体转变量远远高于EN1.4301钢; 快速拉伸可明显抑制冷轧EN1.4318钢中α'--马氏体的转变速率, 降低硬化率. 在均匀变形阶段, 2种钢中α'--马氏体的转变速率和转变量比慢速拉伸时有不同程度地下降, 而且冷轧比退火态更显著. 奥氏体稳定性较高的EN1.4301钢, 常温拉伸 α'--马氏体转变饱和值低于0.3(体积分数), 增强效果小, 快速拉伸导致较快发生塑性失稳和均匀延伸率大幅降低; 而对于层错能低、α'--马氏体饱和值很高的EN1.4318钢, 快速拉伸则使抗拉强度大幅降低, 而且下降的幅度随α'--马氏体饱和值增加而增大; EN1.4318钢的应变速率敏感性远大于EN1.4301钢.

关键词 奥氏体不锈钢应变速率马氏体相变力学行为塑性失稳    
Abstract

Tensile tests of cold rolled and annealed EN1.4318 (AISI301L) and EN1.4301 (AISI304) stainless steel sheet samples with 2 mm in thickness were performed at the strain rates of 5×10-4 s-1 (slow strain rate) and 2×10-2 s-1 (fast strain rate). The mechanism and volume fraction of strain induced α'--martensite transformation were investigated by using TEM, SEM and XRD. The amount of strain induced α'--martensite in EN1.4318 is much higher than that in EN1.4301 when both steels are deformed at the same strain rate. Adiabatic heating caused by the fast strain obviously decreases the α'--martensite transformation rate and work hardening rate in cold rolled EN1.4318 steel. The amount of α'--martensite and transformation rate for both steels are reduced during uniform deformation compared with those at slow strain rate, this behavior is more significant in cold rolled steels than that in annealed ones. For the more stable EN1.4301 with low saturated amount of α'--martensite (<0.3, volume fraction), rapidly plastic instability and tremendous reduction of uniform elongation are due to the small hardening effect at fast strain. In contrast, for EN1.4318 with low stacking fault energy and rather high saturated amount of α'--martensite, the tensile strength is significant decreased with increasing saturated amount of α'--martensite when deformation at fast strain. The strain rate sensitivity of EN1.4318 is much higher than that of EN1.4301.

Key wordsaustenitic stainless steel    strain rate    α′--martensite transformation    mechanical response    plastic instability
收稿日期: 2008-08-29     
ZTFLH: 

TG113

 
基金资助:

国家高技术研究发展计划重点资助项目2008AA030702

作者简介: 刘伟, 女, 1963年生, 副教授

[1] Lichtenfeld J A, Mataya M C, Tyne C J V. Metall Mater Trans, 2006; 37A: 147
[2] Talonen J, Nenonen P, Pape G, Hanninen H. Metall Mater Trans, 2005; 36A: 421
[3] Kumar A, Singha L K. Metall Mater Trans, 1989; 20A: 2857
[4] Talonen J, Hanninen H. Acta Mater, 2007; 55: 6108
[5] Byun T S, Hashimoto N, Farrell K. Acta Mater, 2004; 52: 3889
[6] Angel T. J Iron Steel Inst, 1954; 177: 165
[7] Nohara K, Ono Y, Ohasi N. J Iron Steel Inst, 1977; 63: 772
[8] Schramm R E, Reed R P. Metall Trans, 1975; 6A: 1345
[9] Liu W , Li Q, Jiao D Z, Zheng Y, Li G P. Acta Metall Sin, 2008; 44: 775
(刘伟, 李强, 焦德志, 郑毅, 李国平. 金属学报, 2008; 44: 775)

[10] Zhang H W, Hei Z K, Liu G, Lu J, Lu K. Acta Mater, 2003; 51: 1871
[11] Lee W S, Lin C F. Metall Mater Trans, 2002; 35A: 2801
[12] Byun T S. Acta Mater, 2003; 51: 3063
[13] Spencer K. PhD Thesis, McMaster University, Ontario, 2002
[14] Ferreira P J, Sande J B V, Amaral M. Metall Mater Trans, 2004; 35A: 3091
[15] Sinclair C W, Embury J D, Weatherly G C. Mater Sci Eng, 1999; A272: 90
[16] Han H N, Lee C G, Oh C S, Lee T H, Kim S J. Acta Mater, 2004; 52: 5203
[17] Olson G B, Cohen M. Metall Trans, 1982; 13A: 1907
[18] Olson G B, Azrin M. Metall Trans, 1978; 9A: 731
[19] Sinclair C W, Hoagland R G. Acta Mater, 2008; 56: 4160
[20] De A K, Speer J G, Matlock D K, Murdock D C, Mataya M C, Comstock R J. Metall Mater Trans, 2006; 37A: 1875
[21] Das A, Sivaprasad S, Ghosh M, Chakraborti P C, Tarafder S. Mater Sci Eng, 2008; A486: 283

[1] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[2] 王凯, 晋玺, 焦志明, 乔珺威. CrFeNi中熵合金在宽温域拉伸条件下的力学行为与变形本构方程[J]. 金属学报, 2023, 59(2): 277-288.
[3] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[4] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[5] 王楠, 陈永楠, 赵秦阳, 武刚, 张震, 罗金恒. 应变速率对X80管线钢铁素体/贝氏体应变分配行为的影响[J]. 金属学报, 2023, 59(10): 1299-1310.
[6] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[7] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[8] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[9] 罗旋, 韩芳, 黄天林, 吴桂林, 黄晓旭. 层状异构Mg-3Gd合金的微观组织和力学性能[J]. 金属学报, 2022, 58(11): 1489-1496.
[10] 潘庆松, 崔方, 陶乃镕, 卢磊. 纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为[J]. 金属学报, 2022, 58(1): 45-53.
[11] 曹超, 蒋成洋, 鲁金涛, 陈明辉, 耿树江, 王福会. 不同Cr含量的奥氏体不锈钢在700℃煤灰/高硫烟气环境中的腐蚀行为[J]. 金属学报, 2022, 58(1): 67-74.
[12] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[13] 蒋敏强, 高洋. 金属玻璃的结构年轻化及其对力学行为的影响[J]. 金属学报, 2021, 57(4): 425-438.
[14] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[15] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.