|
|
CrFeNi中熵合金在宽温域拉伸条件下的力学行为与变形本构方程 |
王凯1, 晋玺1, 焦志明2, 乔珺威1( ) |
1.太原理工大学 材料科学与工程学院 太原 030024 2.太原理工大学 机械与运载工程学院 太原 030024 |
|
Mechanical Behaviors and Deformation Constitutive Equations of CrFeNi Medium-Entropy Alloys Under Tensile Conditions from 77 K to 1073 K |
WANG Kai1, JIN Xi1, JIAO Zhiming2, QIAO Junwei1( ) |
1.College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China 2.College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China |
引用本文:
王凯, 晋玺, 焦志明, 乔珺威. CrFeNi中熵合金在宽温域拉伸条件下的力学行为与变形本构方程[J]. 金属学报, 2023, 59(2): 277-288.
Kai WANG,
Xi JIN,
Zhiming JIAO,
Junwei QIAO.
Mechanical Behaviors and Deformation Constitutive Equations of CrFeNi Medium-Entropy Alloys Under Tensile Conditions from 77 K to 1073 K[J]. Acta Metall Sin, 2023, 59(2): 277-288.
1 |
Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys[J]. Prog. Mater. Sci., 2014, 61: 1
doi: 10.1016/j.pmatsci.2013.10.001
|
2 |
Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications[J]. Science, 2014, 345: 1153
doi: 10.1126/science.1254581
pmid: 25190791
|
3 |
Wu Z, David S A, Feng Z, et al. Weldability of a high entropy CrMnFeCoNi alloy[J]. Scr. Mater., 2016, 124: 81
doi: 10.1016/j.scriptamat.2016.06.046
|
4 |
Bae J W, Moon J, Jang M J, et al. Deep drawing behavior of CoCrFeMnNi high-entropy alloys[J]. Metall. Mater. Trans., 2017, 48A: 4111
|
5 |
Zhao Y K, Lee D H, Seok M Y, et al. Resistance of CoCrFeMnNi high-entropy alloy to gaseous hydrogen embrittlement[J]. Scr. Mater., 2017, 135: 54
doi: 10.1016/j.scriptamat.2017.03.029
|
6 |
Li Z Z, Zhao S T, Ritchie R O, et al. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys[J]. Prog. Mater. Sci., 2019, 102: 296
doi: 10.1016/j.pmatsci.2018.12.003
|
7 |
Eleti R R, Bhattacharjee T, Shibata A, et al. Unique deformation behavior and microstructure evolution in high temperature processing of HfNbTaTiZr refractory high entropy alloy[J]. Acta Mater., 2019, 171: 132
doi: 10.1016/j.actamat.2019.04.018
|
8 |
Ma S G, Jiao Z M, Qiao J W, et al. Strain rate effects on the dynamic mechanical properties of the AlCrCuFeNi2 high-entropy alloy[J]. Mater. Sci. Eng., 2016, A649: 35
|
9 |
Song H, Kim D G, Kim D W, et al. Effects of strain rate on room- and cryogenic-temperature compressive properties in metastable V10Cr10Fe45Co35 high-entropy alloy[J]. Sci. Rep., 2019, 9: 6163
doi: 10.1038/s41598-019-42704-x
pmid: 30992512
|
10 |
Senkov O N, Scott J M, Senkova S V, et al. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy[J]. J. Mater. Sci., 2012, 47: 4062
doi: 10.1007/s10853-012-6260-2
|
11 |
Zhang T W, Jiao Z M, Wang Z H, et al. Dynamic deformation behaviors and constitutive relations of an AlCoCr1.5Fe1.5NiTi0.5 high-entropy alloy[J]. Scr. Mater., 2017, 136: 15
doi: 10.1016/j.scriptamat.2017.03.039
|
12 |
Moon J, Hong S I, Seol J B, et al. Strain-rate sensitivity of high-entropy alloys and its significance in deformation[J]. Mater. Res. Lett., 2019, 7: 503
doi: 10.1080/21663831.2019.1668489
|
13 |
Zhang T W, Ma S G, Zhao D, et al. Simultaneous enhancement of strength and ductility in a NiCoCrFe high-entropy alloy upon dynamic tension: Micromechanism and constitutive modeling[J]. Int. J. Plast., 2020, 124: 226
doi: 10.1016/j.ijplas.2019.08.013
|
14 |
Zhang S, Wang Z, Yang H J, et al. Ultra-high strain-rate strengthening in ductile refractory high entropy alloys upon dynamic loading[J]. Intermetallics, 2020, 121: 106699
doi: 10.1016/j.intermet.2020.106699
|
15 |
Gludovatz B, Hohenwarter A, Thurston K V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures[J]. Nat. Commun., 2016, 7: 10602
doi: 10.1038/ncomms10602
pmid: 26830651
|
16 |
Zhang F, Zhou J Q. Tension-compression asymmetry and twin boundaries spacings effects in polycrystalline Ni nanowires[J]. J. Appl. Phys., 2016, 120: 044303
|
17 |
Habib S A, Khan A S, Gnäupel-Herold T, et al. Anisotropy, tension-compression asymmetry and texture evolution of a rare-earth-containing magnesium alloy sheet, ZEK100, at different strain rates and temperatures: Experiments and modeling[J]. Int. J. Plast., 2017, 95: 163
doi: 10.1016/j.ijplas.2017.04.006
|
18 |
He J Y, Wang Q, Zhang H S, et al. Dynamic deformation behavior of a face-centered cubic FeCoNiCrMn high-entropy alloy[J]. Sci. Bull., 2018, 63: 362
doi: 10.1016/j.scib.2018.01.022
|
19 |
Khan A S, Sung Suh Y, Kazmi R. Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys[J]. Int. J. Plast., 2004, 20: 2233
doi: 10.1016/j.ijplas.2003.06.005
|
20 |
Khan A S, Liang R Q. Behaviors of three BCC metal over a wide range of strain rates and temperatures: Experiments and modeling[J]. Int. J. Plast., 1999, 15: 1089
doi: 10.1016/S0749-6419(99)00030-3
|
21 |
Liang R Q, Khan A S. A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures[J]. Int. J. Plast., 1999, 15: 963
doi: 10.1016/S0749-6419(99)00021-2
|
22 |
Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[J]. Eng. Fract. Mech., 1983, 21: 541
|
23 |
Zerilli F J, Armstrong R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations[J]. J. Appl. Phys., 1987, 61: 1816
doi: 10.1063/1.338024
|
24 |
Klepaczko J R, Rusinek A, Rodríguez-Martínez J A, et al. Modelling of thermo-viscoplastic behaviour of DH-36 and Weldox 460-E structural steels at wide ranges of strain rates and temperatures, comparison of constitutive relations for impact problems[J]. Mech. Mater., 2009, 41: 599
doi: 10.1016/j.mechmat.2008.11.004
|
25 |
Netat-Nasser S, Li Y L. Flow stress of f.c.c. polycrystals with application to OFHC Cu[J]. Acta Mater., 1998, 46: 565
doi: 10.1016/S1359-6454(97)00230-9
|
26 |
Xu Z J, Huang F L. Comparison of physically based constitutive models characterizing armor steel over wide temperature and strain rate ranges[J]. Modell. Simul. Mater. Sci. Eng., 2012, 20: 015005
|
27 |
Xu Z J, Huang F L. Comparison of constitutive models for FCC metals over wide temperature and strain rate ranges with application to pure copper[J]. Int. J. Impact Eng., 2015, 79: 65
doi: 10.1016/j.ijimpeng.2014.10.003
|
28 |
Park J M, Moon J, Bae J W, et al. Strain rate effects of dynamic compressive deformation on mechanical properties and microstructure of CoCrFeMnNi high-entropy alloy[J]. Mater. Sci. Eng., 2018, A719: 155
|
29 |
Bobbili R, Madhu V. A modified Johnson-Cook model for FeCoNiCr high entropy alloy over a wide range of strain rates[J]. Mater. Lett., 2018, 218: 103
doi: 10.1016/j.matlet.2018.01.163
|
30 |
Wu Z, Bei H, Pharr G M, et al. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures[J]. Acta Mater., 2014, 81: 428
doi: 10.1016/j.actamat.2014.08.026
|
31 |
Meyers M A. Dynamic Behavior of Materials[M]. New York: John Wiley & Sons Inc., 1994: 305
|
32 |
Wang K, Wang X J, Zhang T W, et al. Tuning Cr-rich nanoprecipitation and heterogeneous structure in equiatomic CrFeNi medium-entropy stainless alloys[J]. J. Iron Steel Res. Int., 2022, 29: 529
doi: 10.1007/s42243-020-00520-y
|
33 |
Liang Z Y, Luo Z C, Huang M X. Temperature dependence of strengthening mechanisms in a twinning-induced plasticity steel[J]. Int. J. Plast., 2019, 116: 192
doi: 10.1016/j.ijplas.2019.01.003
|
34 |
Wang X G, Huang M X. Temperature dependence of Lüders strain and its correlation with martensitic transformation in a medium Mn transformation-induced plasticity steel[J]. J. Iron Steel Res. Int., 2017, 24: 1073
doi: 10.1016/S1006-706X(17)30156-5
|
35 |
Yoshida S, Bhattacharjee T, Bai Y, et al. Friction stress and Hall-Petch relationship in CoCrNi equi-atomic medium entropy alloy processed by severe plastic deformation and subsequent annealing[J]. Scr. Mater., 2017, 134: 33
doi: 10.1016/j.scriptamat.2017.02.042
|
36 |
Reed R P. The spontaneous martensitic transformations in 18% Cr, 8% Ni steels[J]. Acta Metall., 1962, 10: 865
doi: 10.1016/0001-6160(62)90101-3
|
37 |
Wei D X, Li X Q, Schönecker S, et al. Development of strong and ductile metastable face-centered cubic single-phase high-entropy alloys[J]. Acta Mater., 2019, 181: 318
doi: 10.1016/j.actamat.2019.09.050
|
38 |
Christian J W, Mahajan S. Deformation twinning[J]. Prog. Mater. Sci., 1995, 39: 1
doi: 10.1016/0079-6425(94)00007-7
|
39 |
Curtze S, Kuokkala V T, Oikari A, et al. Thermodynamic modeling of the stacking fault energy of austenitic steels[J]. Acta Mater., 2011, 59: 1068
doi: 10.1016/j.actamat.2010.10.037
|
40 |
Wang K. Microstructure control and dynamic tension deformation behavior of CrFeNi medium entropy alloys[D]. Taiyuan: Taiyuan University of Technology, 2021
|
40 |
王 凯. CrFeNi中熵合金的组织调控与动态拉伸变形行为[D]. 太原: 太原理工大学, 2021
|
41 |
De Cooman B C, Estrin Y, Kim S K. Twinning-induced plasticity (TWIP) steels[J]. Acta Mater., 2018, 142: 283
doi: 10.1016/j.actamat.2017.06.046
|
42 |
Xu Z J, Huang F L. Thermomechanical behavior and constitutive modeling of tungsten-based composite over wide temperature and strain rate ranges[J]. Int. J. Plast., 2013, 40: 163
doi: 10.1016/j.ijplas.2012.08.004
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|