Please wait a minute...
金属学报  2023, Vol. 59 Issue (2): 277-288    DOI: 10.11900/0412.1961.2021.00241
  研究论文 本期目录 | 过刊浏览 |
CrFeNi中熵合金在宽温域拉伸条件下的力学行为与变形本构方程
王凯1, 晋玺1, 焦志明2, 乔珺威1()
1.太原理工大学 材料科学与工程学院 太原 030024
2.太原理工大学 机械与运载工程学院 太原 030024
Mechanical Behaviors and Deformation Constitutive Equations of CrFeNi Medium-Entropy Alloys Under Tensile Conditions from 77 K to 1073 K
WANG Kai1, JIN Xi1, JIAO Zhiming2, QIAO Junwei1()
1.College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2.College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China
引用本文:

王凯, 晋玺, 焦志明, 乔珺威. CrFeNi中熵合金在宽温域拉伸条件下的力学行为与变形本构方程[J]. 金属学报, 2023, 59(2): 277-288.
Kai WANG, Xi JIN, Zhiming JIAO, Junwei QIAO. Mechanical Behaviors and Deformation Constitutive Equations of CrFeNi Medium-Entropy Alloys Under Tensile Conditions from 77 K to 1073 K[J]. Acta Metall Sin, 2023, 59(2): 277-288.

全文: PDF(3876 KB)   HTML
摘要: 

系统地研究了单相fcc结构等原子比CrFeNi中熵合金在应变速率10-3~1800 s-1,变形温度77~1073 K的拉伸力学行为。结果表明,在准静态应变速率(10-3 s-1)下,随着变形温度从1073 K降低到77 K,该合金的屈服应力从125 MPa提高到415 MPa,同时均匀延伸率由2%提高到82%。在673 K拉伸时材料表现出反常的均匀延伸率,这与变形过程中发生了动态应变时效相关。在恒定温度77 K下,随着应变速率从10-3 s-1提高到1800 s-1,合金的强度显著提高,屈服应力从415 MPa提高到595 MPa,同时均匀延伸率保持不变,在1800 s-1应变速率下仍可保持在68%。基于经典的ZA模型,构建了屈服应力-温度/应变速率之间的本构关系,结果表明,ZA模型可以很好地拟合和预测CrFeNi中熵合金在不同温度和应变速率下的屈服应力。基于实验结果,通过回归分析和约束优化建立了2种唯象本构模型(JC模型和KHL模型)和3种基于物理基础的本构模型(PB模型、ZA模型和NNL模型)。对比发现,JC模型和PB模型分别具有最高和最低的描述准确性。

关键词 中熵合金力学行为高应变速率高/低温本构模型    
Abstract

Concentrated multicomponent alloys (CMCAs) or high/medium-entropy alloys (HEAs/MEAs) possess outstanding comprehensive properties, causing them to have the potential to be the next generation of structural materials. Phenomena occurring under dynamic tensile loading or high/low temperature of such alloys have been hardly investigated. However, its understanding is essentially needed in their application in automotive, aerospace, and military industries. Meanwhile, the suitable constitutive equations of CMCAs under such cases have been rarely investigated. In this work, the thermodynamic behavior of equiatomic CrFeNi MEA with single-phase fcc structure has been systematically investigated at strain rates from 10-3 s-1 to 1800 s-1 and temperatures from 77 K to 1073 K. The results showed that as the deformation temperature decreased from 1073 K to 77 K, the yield stress was improved significantly from 125 MPa to 415 MPa. Meanwhile, the uniform elongation increased from 2% to 82%. The abnormal uniform elongation appearing at 673 K was closely related to dynamic strain aging. As the strain rate increased from 10-3 s-1 to 1800 s-1 at a constant temperature of 77 K, the strength increased significantly (e.g., the yield stress increased from 415 MPa to 595 MPa), and the uniform elongation remained unchanged, still maintaining 68% at 1800 s-1. After deformation, there were no second phases attributed to a large Ni amount in the alloys. Some deformation twins appeared at 77 K. Based on the experimental results, the relationship between yield stress and temperatures/strain rates could be successfully revealed using the ZA model. Moreover, regression analysis and constraint optimization established two phenomenological constitutive models (JC and KHL models) and three physically-based constitutive models (PB model, ZA model, and NNL model). JC and PB models had the highest and lowest description accuracy, respectively. Besides, the JC model was hard to describe the case that the work hardening decreased due to the change of temperature or strain rates, and the PB model was unsuitable in characterizing the complex work hardening behaviors.

Key wordsmedium-entropy alloy    mechanical behavior    high strain rate    high/low temperature    constitutive equation
收稿日期: 2021-06-10     
ZTFLH:  O341  
基金资助:国家自然科学基金项目(52271110);爆炸科学与技术国家重点实验室开放项目(KFJJ20-13M)
作者简介: 王 凯,男,1996年生,硕士生
图1  分离式Hopkinson拉杆示意图
图2  CrFeNi中熵合金经70%冷轧和1373 K退火10 min后的EBSD分析
图3  在应变速率为10-3 s-1及不同变形温度下CrFeNi中熵合金的力学性能
图4  在77 K及不同变形速率下CrFeNi中熵合金的力学性能
图5  CrFeNi中熵合金不同温度和不同应变速率下的屈服应力预测结果与实验值对比
图6  不同温度拉伸断裂后CrFeNi中熵合金的XRD谱
图7  CrFeNi中熵合金不同温度拉伸断裂后的EBSD带衬度图
图8  准静态加载和低温加载下实验数据和唯象本构模型(JC和KHL模型)结果的对比
图9  准静态加载和低温加载下实验数据和基于物理基础的本构模型(ZA、NNL和PB模型)结果的对比(a, b) ZA model (c, d) NNL model (e, f) PB model
图10  不同本构模型对实验数据的描述误差
1 Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys[J]. Prog. Mater. Sci., 2014, 61: 1
doi: 10.1016/j.pmatsci.2013.10.001
2 Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications[J]. Science, 2014, 345: 1153
doi: 10.1126/science.1254581 pmid: 25190791
3 Wu Z, David S A, Feng Z, et al. Weldability of a high entropy CrMnFeCoNi alloy[J]. Scr. Mater., 2016, 124: 81
doi: 10.1016/j.scriptamat.2016.06.046
4 Bae J W, Moon J, Jang M J, et al. Deep drawing behavior of CoCrFeMnNi high-entropy alloys[J]. Metall. Mater. Trans., 2017, 48A: 4111
5 Zhao Y K, Lee D H, Seok M Y, et al. Resistance of CoCrFeMnNi high-entropy alloy to gaseous hydrogen embrittlement[J]. Scr. Mater., 2017, 135: 54
doi: 10.1016/j.scriptamat.2017.03.029
6 Li Z Z, Zhao S T, Ritchie R O, et al. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys[J]. Prog. Mater. Sci., 2019, 102: 296
doi: 10.1016/j.pmatsci.2018.12.003
7 Eleti R R, Bhattacharjee T, Shibata A, et al. Unique deformation behavior and microstructure evolution in high temperature processing of HfNbTaTiZr refractory high entropy alloy[J]. Acta Mater., 2019, 171: 132
doi: 10.1016/j.actamat.2019.04.018
8 Ma S G, Jiao Z M, Qiao J W, et al. Strain rate effects on the dynamic mechanical properties of the AlCrCuFeNi2 high-entropy alloy[J]. Mater. Sci. Eng., 2016, A649: 35
9 Song H, Kim D G, Kim D W, et al. Effects of strain rate on room- and cryogenic-temperature compressive properties in metastable V10Cr10Fe45Co35 high-entropy alloy[J]. Sci. Rep., 2019, 9: 6163
doi: 10.1038/s41598-019-42704-x pmid: 30992512
10 Senkov O N, Scott J M, Senkova S V, et al. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy[J]. J. Mater. Sci., 2012, 47: 4062
doi: 10.1007/s10853-012-6260-2
11 Zhang T W, Jiao Z M, Wang Z H, et al. Dynamic deformation behaviors and constitutive relations of an AlCoCr1.5Fe1.5NiTi0.5 high-entropy alloy[J]. Scr. Mater., 2017, 136: 15
doi: 10.1016/j.scriptamat.2017.03.039
12 Moon J, Hong S I, Seol J B, et al. Strain-rate sensitivity of high-entropy alloys and its significance in deformation[J]. Mater. Res. Lett., 2019, 7: 503
doi: 10.1080/21663831.2019.1668489
13 Zhang T W, Ma S G, Zhao D, et al. Simultaneous enhancement of strength and ductility in a NiCoCrFe high-entropy alloy upon dynamic tension: Micromechanism and constitutive modeling[J]. Int. J. Plast., 2020, 124: 226
doi: 10.1016/j.ijplas.2019.08.013
14 Zhang S, Wang Z, Yang H J, et al. Ultra-high strain-rate strengthening in ductile refractory high entropy alloys upon dynamic loading[J]. Intermetallics, 2020, 121: 106699
doi: 10.1016/j.intermet.2020.106699
15 Gludovatz B, Hohenwarter A, Thurston K V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures[J]. Nat. Commun., 2016, 7: 10602
doi: 10.1038/ncomms10602 pmid: 26830651
16 Zhang F, Zhou J Q. Tension-compression asymmetry and twin boundaries spacings effects in polycrystalline Ni nanowires[J]. J. Appl. Phys., 2016, 120: 044303
17 Habib S A, Khan A S, Gnäupel-Herold T, et al. Anisotropy, tension-compression asymmetry and texture evolution of a rare-earth-containing magnesium alloy sheet, ZEK100, at different strain rates and temperatures: Experiments and modeling[J]. Int. J. Plast., 2017, 95: 163
doi: 10.1016/j.ijplas.2017.04.006
18 He J Y, Wang Q, Zhang H S, et al. Dynamic deformation behavior of a face-centered cubic FeCoNiCrMn high-entropy alloy[J]. Sci. Bull., 2018, 63: 362
doi: 10.1016/j.scib.2018.01.022
19 Khan A S, Sung Suh Y, Kazmi R. Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys[J]. Int. J. Plast., 2004, 20: 2233
doi: 10.1016/j.ijplas.2003.06.005
20 Khan A S, Liang R Q. Behaviors of three BCC metal over a wide range of strain rates and temperatures: Experiments and modeling[J]. Int. J. Plast., 1999, 15: 1089
doi: 10.1016/S0749-6419(99)00030-3
21 Liang R Q, Khan A S. A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures[J]. Int. J. Plast., 1999, 15: 963
doi: 10.1016/S0749-6419(99)00021-2
22 Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[J]. Eng. Fract. Mech., 1983, 21: 541
23 Zerilli F J, Armstrong R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations[J]. J. Appl. Phys., 1987, 61: 1816
doi: 10.1063/1.338024
24 Klepaczko J R, Rusinek A, Rodríguez-Martínez J A, et al. Modelling of thermo-viscoplastic behaviour of DH-36 and Weldox 460-E structural steels at wide ranges of strain rates and temperatures, comparison of constitutive relations for impact problems[J]. Mech. Mater., 2009, 41: 599
doi: 10.1016/j.mechmat.2008.11.004
25 Netat-Nasser S, Li Y L. Flow stress of f.c.c. polycrystals with application to OFHC Cu[J]. Acta Mater., 1998, 46: 565
doi: 10.1016/S1359-6454(97)00230-9
26 Xu Z J, Huang F L. Comparison of physically based constitutive models characterizing armor steel over wide temperature and strain rate ranges[J]. Modell. Simul. Mater. Sci. Eng., 2012, 20: 015005
27 Xu Z J, Huang F L. Comparison of constitutive models for FCC metals over wide temperature and strain rate ranges with application to pure copper[J]. Int. J. Impact Eng., 2015, 79: 65
doi: 10.1016/j.ijimpeng.2014.10.003
28 Park J M, Moon J, Bae J W, et al. Strain rate effects of dynamic compressive deformation on mechanical properties and microstructure of CoCrFeMnNi high-entropy alloy[J]. Mater. Sci. Eng., 2018, A719: 155
29 Bobbili R, Madhu V. A modified Johnson-Cook model for FeCoNiCr high entropy alloy over a wide range of strain rates[J]. Mater. Lett., 2018, 218: 103
doi: 10.1016/j.matlet.2018.01.163
30 Wu Z, Bei H, Pharr G M, et al. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures[J]. Acta Mater., 2014, 81: 428
doi: 10.1016/j.actamat.2014.08.026
31 Meyers M A. Dynamic Behavior of Materials[M]. New York: John Wiley & Sons Inc., 1994: 305
32 Wang K, Wang X J, Zhang T W, et al. Tuning Cr-rich nanoprecipitation and heterogeneous structure in equiatomic CrFeNi medium-entropy stainless alloys[J]. J. Iron Steel Res. Int., 2022, 29: 529
doi: 10.1007/s42243-020-00520-y
33 Liang Z Y, Luo Z C, Huang M X. Temperature dependence of strengthening mechanisms in a twinning-induced plasticity steel[J]. Int. J. Plast., 2019, 116: 192
doi: 10.1016/j.ijplas.2019.01.003
34 Wang X G, Huang M X. Temperature dependence of Lüders strain and its correlation with martensitic transformation in a medium Mn transformation-induced plasticity steel[J]. J. Iron Steel Res. Int., 2017, 24: 1073
doi: 10.1016/S1006-706X(17)30156-5
35 Yoshida S, Bhattacharjee T, Bai Y, et al. Friction stress and Hall-Petch relationship in CoCrNi equi-atomic medium entropy alloy processed by severe plastic deformation and subsequent annealing[J]. Scr. Mater., 2017, 134: 33
doi: 10.1016/j.scriptamat.2017.02.042
36 Reed R P. The spontaneous martensitic transformations in 18% Cr, 8% Ni steels[J]. Acta Metall., 1962, 10: 865
doi: 10.1016/0001-6160(62)90101-3
37 Wei D X, Li X Q, Schönecker S, et al. Development of strong and ductile metastable face-centered cubic single-phase high-entropy alloys[J]. Acta Mater., 2019, 181: 318
doi: 10.1016/j.actamat.2019.09.050
38 Christian J W, Mahajan S. Deformation twinning[J]. Prog. Mater. Sci., 1995, 39: 1
doi: 10.1016/0079-6425(94)00007-7
39 Curtze S, Kuokkala V T, Oikari A, et al. Thermodynamic modeling of the stacking fault energy of austenitic steels[J]. Acta Mater., 2011, 59: 1068
doi: 10.1016/j.actamat.2010.10.037
40 Wang K. Microstructure control and dynamic tension deformation behavior of CrFeNi medium entropy alloys[D]. Taiyuan: Taiyuan University of Technology, 2021
40 王 凯. CrFeNi中熵合金的组织调控与动态拉伸变形行为[D]. 太原: 太原理工大学, 2021
41 De Cooman B C, Estrin Y, Kim S K. Twinning-induced plasticity (TWIP) steels[J]. Acta Mater., 2018, 142: 283
doi: 10.1016/j.actamat.2017.06.046
42 Xu Z J, Huang F L. Thermomechanical behavior and constitutive modeling of tungsten-based composite over wide temperature and strain rate ranges[J]. Int. J. Plast., 2013, 40: 163
doi: 10.1016/j.ijplas.2012.08.004
[1] 刘广, 陈鹏, 姚锡禹, 陈朴, 刘星辰, 刘朝阳, 严明. CrMoTi中熵合金的性能及其原位合金化增材制造[J]. 金属学报, 2022, 58(8): 1055-1064.
[2] 罗旋, 韩芳, 黄天林, 吴桂林, 黄晓旭. 层状异构Mg-3Gd合金的微观组织和力学性能[J]. 金属学报, 2022, 58(11): 1489-1496.
[3] 蒋敏强, 高洋. 金属玻璃的结构年轻化及其对力学行为的影响[J]. 金属学报, 2021, 57(4): 425-438.
[4] 涂爱东, 滕春禹, 王皞, 徐东生, 傅耘, 任占勇, 杨锐. Ti-Al合金γ/α2界面结构及拉伸变形行为的分子动力学模拟[J]. 金属学报, 2019, 55(2): 291-298.
[5] 冯浩,李花兵,路鹏冲,杨纯田,姜周华,武晓雷. 铜绿假单胞菌对CrCoNi中熵合金微生物腐蚀行为的影响[J]. 金属学报, 2019, 55(11): 1457-1468.
[6] 李旭东, 毛萍莉, 刘晏宇, 刘正, 王志, 王峰. 高应变速率下Mg-3Zn-1Y镁合金的各向异性及变形机制[J]. 金属学报, 2018, 54(4): 557-565.
[7] 赵燕春, 孙浩, 李春玲, 蒋建龙, 毛瑞鹏, 寇生中, 李春燕. 高强韧Ti-Ni基块体金属玻璃复合材料高温变形行为[J]. 金属学报, 2018, 54(12): 1818-1824.
[8] 张丽丽, 江鸿翔, 赵九洲, 李璐, 孙倩. 溶质Ti对Al-Ti-B中间合金细化Al影响的新认识:TiB2粒子的动力学行为及溶质Ti的影响[J]. 金属学报, 2017, 53(9): 1091-1100.
[9] 余滨杉,王社良,杨涛,樊禹江. 基于遗传算法优化的SMABP神经网络本构模型[J]. 金属学报, 2017, 53(2): 248-256.
[10] 李飞,张华煜,何文武,陈慧琴,郭会光. Mn18Cr18N奥氏体不锈钢的压缩拉伸连续加载变形行为*[J]. 金属学报, 2016, 52(8): 956-964.
[11] 孙朝阳, 郭祥如, 黄杰, 郭宁, 王善伟, 杨竞. 耦合孪生的TWIP钢单晶体塑性变形行为模拟研究[J]. 金属学报, 2015, 51(3): 357-363.
[12] 金涛,周亦胄,王新广,刘金来,孙晓峰,胡壮麒. 先进镍基单晶高温合金组织稳定性及力学行为的研究进展[J]. 金属学报, 2015, 51(10): 1153-1162.
[13] 孙朝阳, 黄杰, 郭宁, 杨竞. 基于位错密度的Fe-22Mn-0.6C型TWIP钢物理本构模型研究[J]. 金属学报, 2014, 50(9): 1115-1122.
[14] 安彤,秦飞,王晓亮. 焊锡接点IMC层微结构演化与力学行为[J]. 金属学报, 2013, 49(9): 1137-1142.
[15] 郑成思,李龙飞,杨王玥,孙祖庆. 微观组织对共析钢室温加工硬化行为的影响[J]. 金属学报, 2013, 49(3): 257-264.