|
|
层状异构Mg-3Gd合金的微观组织和力学性能 |
罗旋1,2, 韩芳1,2, 黄天林1,2, 吴桂林3, 黄晓旭1,2( ) |
1.重庆大学 材料科学与工程学院 教育部轻合金材料国际合作联合实验室 重庆 400044 2.重庆大学 沈阳材料科学国家研究中心 重庆 400044 3.北京科技大学 北京材料基因工程高精尖创新中心 北京 100083 |
|
Microstructure and Mechanical Properties of Layered Heterostructured Mg-3Gd Alloy |
LUO Xuan1,2, HAN Fang1,2, HUANG Tianlin1,2, WU Guilin3, HUANG Xiaoxu1,2( ) |
1.International Joint Laboratory for Light Alloys (MOE), College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China 2.Shenyang National Laboratory for Materials Science, Chongqing University, Chongqing 400044, China 3.Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China |
引用本文:
罗旋, 韩芳, 黄天林, 吴桂林, 黄晓旭. 层状异构Mg-3Gd合金的微观组织和力学性能[J]. 金属学报, 2022, 58(11): 1489-1496.
Xuan LUO,
Fang HAN,
Tianlin HUANG,
Guilin WU,
Xiaoxu HUANG.
Microstructure and Mechanical Properties of Layered Heterostructured Mg-3Gd Alloy[J]. Acta Metall Sin, 2022, 58(11): 1489-1496.
1 |
Liu Q. Research progress on plastic deformation mechanism of Mg alloys [J]. Acta Metall. Sin., 2010, 46: 1458
doi: 10.3724/SP.J.1037.2010.00446
|
1 |
刘 庆. 镁合金塑性变形机理研究进展 [J]. 金属学报, 2010, 46: 1458
|
2 |
Hono K, Mendis C L, Sasaki T T, et al. Towards the development of heat-treatable high-strength wrought Mg alloys [J]. Scr. Mater., 2010, 63: 710
doi: 10.1016/j.scriptamat.2010.01.038
|
3 |
Agnew S R, Duygulu Ö. Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B [J]. Int. J. Plast., 2005, 21: 1161
doi: 10.1016/j.ijplas.2004.05.018
|
4 |
Shi B D, Yang C, Peng Y, et al. Anisotropy of wrought magnesium alloys: A focused overview [J]. J. Magnes. Alloys, 2022, 10: 1476
doi: 10.1016/j.jma.2022.03.006
|
5 |
Nie J F. Precipitation and hardening in magnesium alloys [J]. Metall. Mater. Trans., 2012, 43A: 3891
|
6 |
Wang H Y, Xia N, Bu R Y, et al. Current research and future prospect on low-alloyed high-performance wrought magnesium alloys [J]. Acta Metall. Sin., 2021, 57: 1429
doi: 10.11900/0412.1961.2021.00347
|
6 |
王慧远, 夏 楠, 布如宇 等. 低合金化高性能变形镁合金研究现状及展望 [J]. 金属学报, 2021, 57: 1429
doi: 10.11900/0412.1961.2021.00347
|
7 |
Fan H D, Aubry S, Arsenlis A, et al. Grain size effects on dislocation and twinning mediated plasticity in magnesium [J]. Scr. Mater., 2016, 112: 50
doi: 10.1016/j.scriptamat.2015.09.008
|
8 |
Luo X. Effect of grain size on the mechanical behavior and deformation mechanisms of Mg-3Gd [D]. Chongqing: Chongqing University, 2019
|
8 |
罗 旋. Mg-3Gd合金的力学行为、变形机制和晶粒尺寸效应 [D]. 重庆: 重庆大学, 2019
|
9 |
Nie J F. Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys [J]. Scr. Mater., 2003, 48: 1009
doi: 10.1016/S1359-6462(02)00497-9
|
10 |
Yu H H, Li C Z, Xin Y C, et al. The mechanism for the high dependence of the Hall-Petch slope for twinning/slip on texture in Mg alloys [J]. Acta Mater., 2017, 128: 313
doi: 10.1016/j.actamat.2017.02.044
|
11 |
Huang X X. Size effects on the strength of metals [J]. Acta Metall. Sin., 2014, 50: 137
doi: 10.3724/SP.J.1037.2014.00016
|
11 |
黄晓旭. 金属强度的尺寸效应 [J]. 金属学报, 2014, 50: 137
doi: 10.3724/SP.J.1037.2014.00016
|
12 |
Wu X L, Zhu Y T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties [J]. Mater. Res. Lett., 2017, 5: 527
doi: 10.1080/21663831.2017.1343208
|
13 |
Zhu Y T, Ameyama K, Anderson P M, et al. Heterostructured materials: Superior properties from hetero-zone interaction [J]. Mater. Res. Lett., 2021, 9: 1
doi: 10.1080/21663831.2020.1796836
|
14 |
Ovid'ko I A, Valiev R Z, Zhu Y T. Review on superior strength and enhanced ductility of metallic nanomaterials [J]. Prog. Mater. Sci., 2018, 94: 462
doi: 10.1016/j.pmatsci.2018.02.002
|
15 |
Jin Z Z, Zha M, Wang S Q, et al. Alloying design and microstructural control strategies towards developing Mg alloys with enhanced ductility [J]. J. Magnes. Alloys, 2022, 10: 1191
doi: 10.1016/j.jma.2022.04.002
|
16 |
Li S J, Jin J F, Song Y H, et al. Multimodal microstructure of Mg-Gd-Y alloy through an integrated simulation of “process-structure-property” [J]. Acta Metall. Sin., 2022, 58: 114
|
16 |
李少杰, 金剑锋, 宋宇豪 等. “工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织 [J]. 金属学报, 2022, 58: 114
doi: 10.11900/0412.1961.2021.00222
|
17 |
Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
doi: 10.1073/pnas.1517193112
|
18 |
Zhang L, Chen Z, Wang Y H, et al. Fabricating interstitial-free steel with simultaneous high strength and good ductility with homogeneous layer and lamella structure [J]. Scr. Mater., 2017, 141: 111
doi: 10.1016/j.scriptamat.2017.06.044
|
19 |
Wang Y H, Kang J M, Peng Y, et al. Hall-Petch strengthening in Fe-34.5Mn-0.04C steel cold-rolled, partially recrystallized and fully recrystallized [J]. Scr. Mater., 2018, 155: 41
doi: 10.1016/j.scriptamat.2018.06.019
|
20 |
Luo X, Feng Z Q, Yu T B, et al. Transitions in mechanical behavior and in deformation mechanisms enhance the strength and ductility of Mg-3Gd [J]. Acta Mater., 2020, 183: 398
doi: 10.1016/j.actamat.2019.11.034
|
21 |
Xu C, Fan G H, Nakata T, et al. Deformation behavior of ultra-strong and ductile Mg-Gd-Y-Zn-Zr alloy with bimodal microstructure [J]. Metall. Mater. Trans., 2018, 49A: 1931
|
22 |
Go Y, Jo S M, Park S H, et al. Microstructure and mechanical properties of non-flammable Mg-8Al-0.3Zn-0.1Mn-0.3Ca-0.2Y alloy subjected to low-temperature, low-speed extrusion [J]. J. Alloys Compd., 2018, 739: 69
doi: 10.1016/j.jallcom.2017.12.229
|
23 |
Zhang H, Wang H Y, Wang J G, et al. The synergy effect of fine and coarse grains on enhanced ductility of bimodal-structured Mg alloys [J]. J. Alloys Compd., 2019, 780: 312
doi: 10.1016/j.jallcom.2018.11.229
|
24 |
Luo X, Huang T L, Wang Y H, et al. Strong and ductile AZ31 Mg alloy with a layered bimodal structure [J]. Sci. Rep., 2019, 9: 5428
doi: 10.1038/s41598-019-41987-4
pmid: 30932008
|
25 |
Zheng R X, Bhattacharjee T, Gao S, et al. Change of deformation mechanisms leading to high strength and large ductility in Mg-Zn-Zr-Ca Alloy with fully recrystallized ultrafine grained microstructures [J]. Sci. Rep., 2019, 9: 11702
doi: 10.1038/s41598-019-48271-5
pmid: 31406235
|
26 |
Zheng R X, Bhattacharjee T, Shibata A, et al. Simultaneously enhanced strength and ductility of Mg-Zn-Zr-Ca alloy with fully recrystallized ultrafine grained structures [J]. Scr. Mater., 2017, 131: 1
doi: 10.1016/j.scriptamat.2016.12.024
|
27 |
Luo X, Feng Z Q, Yu T B, et al. Microstructural evolution in Mg-3Gd during accumulative roll-bonding [J]. Mater. Sci. Eng., 2020, A772: 138763
|
28 |
Tsuji N, Ito Y, Saito Y, et al. Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing [J]. Scr. Mater., 2002, 47: 893
doi: 10.1016/S1359-6462(02)00282-8
|
29 |
Huang X X, Hansen N, Tsuji N. Hardening by annealing and softening by deformation in nanostructured metals [J]. Science, 2006, 312: 249
pmid: 16614217
|
30 |
Kamikawa N, Huang X X, Tsuji N, et al. Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed [J]. Acta Mater., 2009, 57: 4198
doi: 10.1016/j.actamat.2009.05.017
|
31 |
Huang T L, Shuai L F, Wakeel A, et al. Strengthening mechanisms and Hall-Petch stress of ultrafine grained Al-0.3%Cu [J]. Acta Mater., 2018, 156: 369
doi: 10.1016/j.actamat.2018.07.006
|
32 |
Gao S, Chen M C, Joshi M, et al. Yielding behavior and its effect on uniform elongation in IF steel with various grain sizes [J]. J. Mater. Sci., 2014, 49: 6536
doi: 10.1007/s10853-014-8233-0
|
33 |
Tsuji N, Ogata S, Inui H, et al. Strategy for managing both high strength and large ductility in structural materials—Sequential nucleation of different deformation modes based on a concept of plaston [J]. Scr. Mater., 2020, 181: 35
doi: 10.1016/j.scriptamat.2020.02.001
|
34 |
Koike J, Kobayashi T, Mukai T, et al. The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys [J]. Acta Mater., 2003, 51: 2055
doi: 10.1016/S1359-6454(03)00005-3
|
35 |
Jain J, Cizek P, Hariharan K. Transmission electron microscopy investigation on dislocation bands in pure Mg [J]. Scr. Mater., 2017, 130: 133
doi: 10.1016/j.scriptamat.2016.11.035
|
36 |
Geng J, Chisholm M F, Mishra R K, et al. An electron microscopy study of dislocation structures in Mg single crystals compressed along [0001] at room temperature [J]. Philos. Mag., 2015, 95: 3910
doi: 10.1080/14786435.2015.1108531
|
37 |
Liu B Y, Liu F, Yang N, et al. Large plasticity in magnesium mediated by pyramidal dislocations [J]. Science, 2019, 365: 73
doi: 10.1126/science.aaw2843
|
38 |
Wu Z X, Curtin W A. The origins of high hardening and low ductility in magnesium [J]. Nature, 2015, 526: 62
doi: 10.1038/nature15364
|
39 |
Ahmad R, Yin B L, Wu Z X, et al. Designing high ductility in magnesium alloys [J]. Acta Mater., 2019, 172: 161
doi: 10.1016/j.actamat.2019.04.019
|
40 |
Wu Z X, Ahmad R, Yin B L, et al. Mechanistic origin and prediction of enhanced ductility in magnesium alloys [J]. Science, 2018, 359: 447
doi: 10.1126/science.aap8716
pmid: 29371467
|
41 |
Feng Z Q, Fu R, Lin C W, et al. TEM-based dislocation tomography: Challenges and opportunities [J]. Curr. Opin. Solid State Mater. Sci., 2020, 24: 100833
doi: 10.1016/j.cossms.2020.100833
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|