Please wait a minute...
金属学报  2022, Vol. 58 Issue (11): 1489-1496    DOI: 10.11900/0412.1961.2022.00343
  研究论文 本期目录 | 过刊浏览 |
层状异构Mg-3Gd合金的微观组织和力学性能
罗旋1,2, 韩芳1,2, 黄天林1,2, 吴桂林3, 黄晓旭1,2()
1.重庆大学 材料科学与工程学院 教育部轻合金材料国际合作联合实验室 重庆 400044
2.重庆大学 沈阳材料科学国家研究中心 重庆 400044
3.北京科技大学 北京材料基因工程高精尖创新中心 北京 100083
Microstructure and Mechanical Properties of Layered Heterostructured Mg-3Gd Alloy
LUO Xuan1,2, HAN Fang1,2, HUANG Tianlin1,2, WU Guilin3, HUANG Xiaoxu1,2()
1.International Joint Laboratory for Light Alloys (MOE), College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
2.Shenyang National Laboratory for Materials Science, Chongqing University, Chongqing 400044, China
3.Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

罗旋, 韩芳, 黄天林, 吴桂林, 黄晓旭. 层状异构Mg-3Gd合金的微观组织和力学性能[J]. 金属学报, 2022, 58(11): 1489-1496.
Xuan LUO, Fang HAN, Tianlin HUANG, Guilin WU, Xiaoxu HUANG. Microstructure and Mechanical Properties of Layered Heterostructured Mg-3Gd Alloy[J]. Acta Metall Sin, 2022, 58(11): 1489-1496.

全文: PDF(2347 KB)   HTML
摘要: 

以Mg-3Gd (质量分数,%)合金为研究对象,采用累积叠轧和退火工艺制备了由层厚不均匀的回复组织层和再结晶组织层交替组成的层状异构样品。拉伸实验结果表明,这种层状异构样品可以在同等拉伸塑性的条件下获得比均匀再结晶结构更高的强度,并表现出成形加工所需的连续流变行为。回复层和再结晶层之间的协调变形激发了锥面<c + a>滑移在界面附近的开动,增强了位错增殖和累积,提高了加工硬化率和塑性。

关键词 层状异构力学行为变形机制镁合金    
Abstract

As the lightest structural metallic materials, Mg alloys have immense development potential in the automotive, aerospace, medical, and electronic industries. However, the low strength and the poor ductility of Mg alloys limit their engineering applications. Recent investigations have shown that heterostructured Mg alloys exhibit significantly improved strength and ductility. This work applies accumulative roll-bonding and subsequent annealing to a Mg-3Gd alloy to produce layered heterostructures composed of alternating recovered and recrystallized layers of varying thicknesses. These heterostructures exhibit higher strength than homogeneous grain structures at a similar tensile ductility. They also show a continuous flow behavior desired for metal forming. A high density of the <c + a> dislocations is activated at the interfaces between the layers to accommodate the deformation incompatibility, which contributes to dislocation multiplications and accumulations and enhances work hardening rate and ductility.

Key wordslayered heterostructure    mechanical behavior    deformation mechanism    Mg alloy
收稿日期: 2022-07-18     
ZTFLH:  TB31  
基金资助:国家重点研发计划项目(2021YFB3702101);国家自然科学基金项目(52071038)
作者简介: 罗 旋,男,1991年生,博士
图1  累积叠轧(ARB)变形Mg-3Gd合金的非均匀微观结构的TEM像和结构示意图(基于文献[27]报道的实验结果)
图2  Mg-3Gd合金经290℃部分再结晶退火形成的由层厚不均匀的回复层和再结晶层组成的层状异构
图3  ARB变形态、层状异构和均匀再结晶结构Mg-3Gd合金的应力-应变曲线和加工硬化率曲线
图4  不同微观结构和晶粒尺寸Mg-3Gd合金的屈服强度与均匀延伸率的关系
图5  不同微观结构AZ31镁合金的屈服强度与均匀延伸率的关系(基于文献[24]报道的实验结果)
图6  层状异构Mg-3Gd样品在拉伸变形后位错结构的TEM像
1 Liu Q. Research progress on plastic deformation mechanism of Mg alloys [J]. Acta Metall. Sin., 2010, 46: 1458
doi: 10.3724/SP.J.1037.2010.00446
1 刘 庆. 镁合金塑性变形机理研究进展 [J]. 金属学报, 2010, 46: 1458
2 Hono K, Mendis C L, Sasaki T T, et al. Towards the development of heat-treatable high-strength wrought Mg alloys [J]. Scr. Mater., 2010, 63: 710
doi: 10.1016/j.scriptamat.2010.01.038
3 Agnew S R, Duygulu Ö. Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B [J]. Int. J. Plast., 2005, 21: 1161
doi: 10.1016/j.ijplas.2004.05.018
4 Shi B D, Yang C, Peng Y, et al. Anisotropy of wrought magnesium alloys: A focused overview [J]. J. Magnes. Alloys, 2022, 10: 1476
doi: 10.1016/j.jma.2022.03.006
5 Nie J F. Precipitation and hardening in magnesium alloys [J]. Metall. Mater. Trans., 2012, 43A: 3891
6 Wang H Y, Xia N, Bu R Y, et al. Current research and future prospect on low-alloyed high-performance wrought magnesium alloys [J]. Acta Metall. Sin., 2021, 57: 1429
doi: 10.11900/0412.1961.2021.00347
6 王慧远, 夏 楠, 布如宇 等. 低合金化高性能变形镁合金研究现状及展望 [J]. 金属学报, 2021, 57: 1429
doi: 10.11900/0412.1961.2021.00347
7 Fan H D, Aubry S, Arsenlis A, et al. Grain size effects on dislocation and twinning mediated plasticity in magnesium [J]. Scr. Mater., 2016, 112: 50
doi: 10.1016/j.scriptamat.2015.09.008
8 Luo X. Effect of grain size on the mechanical behavior and deformation mechanisms of Mg-3Gd [D]. Chongqing: Chongqing University, 2019
8 罗 旋. Mg-3Gd合金的力学行为、变形机制和晶粒尺寸效应 [D]. 重庆: 重庆大学, 2019
9 Nie J F. Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys [J]. Scr. Mater., 2003, 48: 1009
doi: 10.1016/S1359-6462(02)00497-9
10 Yu H H, Li C Z, Xin Y C, et al. The mechanism for the high dependence of the Hall-Petch slope for twinning/slip on texture in Mg alloys [J]. Acta Mater., 2017, 128: 313
doi: 10.1016/j.actamat.2017.02.044
11 Huang X X. Size effects on the strength of metals [J]. Acta Metall. Sin., 2014, 50: 137
doi: 10.3724/SP.J.1037.2014.00016
11 黄晓旭. 金属强度的尺寸效应 [J]. 金属学报, 2014, 50: 137
doi: 10.3724/SP.J.1037.2014.00016
12 Wu X L, Zhu Y T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties [J]. Mater. Res. Lett., 2017, 5: 527
doi: 10.1080/21663831.2017.1343208
13 Zhu Y T, Ameyama K, Anderson P M, et al. Heterostructured materials: Superior properties from hetero-zone interaction [J]. Mater. Res. Lett., 2021, 9: 1
doi: 10.1080/21663831.2020.1796836
14 Ovid'ko I A, Valiev R Z, Zhu Y T. Review on superior strength and enhanced ductility of metallic nanomaterials [J]. Prog. Mater. Sci., 2018, 94: 462
doi: 10.1016/j.pmatsci.2018.02.002
15 Jin Z Z, Zha M, Wang S Q, et al. Alloying design and microstructural control strategies towards developing Mg alloys with enhanced ductility [J]. J. Magnes. Alloys, 2022, 10: 1191
doi: 10.1016/j.jma.2022.04.002
16 Li S J, Jin J F, Song Y H, et al. Multimodal microstructure of Mg-Gd-Y alloy through an integrated simulation of “process-structure-property” [J]. Acta Metall. Sin., 2022, 58: 114
16 李少杰, 金剑锋, 宋宇豪 等. “工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织 [J]. 金属学报, 2022, 58: 114
doi: 10.11900/0412.1961.2021.00222
17 Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
doi: 10.1073/pnas.1517193112
18 Zhang L, Chen Z, Wang Y H, et al. Fabricating interstitial-free steel with simultaneous high strength and good ductility with homogeneous layer and lamella structure [J]. Scr. Mater., 2017, 141: 111
doi: 10.1016/j.scriptamat.2017.06.044
19 Wang Y H, Kang J M, Peng Y, et al. Hall-Petch strengthening in Fe-34.5Mn-0.04C steel cold-rolled, partially recrystallized and fully recrystallized [J]. Scr. Mater., 2018, 155: 41
doi: 10.1016/j.scriptamat.2018.06.019
20 Luo X, Feng Z Q, Yu T B, et al. Transitions in mechanical behavior and in deformation mechanisms enhance the strength and ductility of Mg-3Gd [J]. Acta Mater., 2020, 183: 398
doi: 10.1016/j.actamat.2019.11.034
21 Xu C, Fan G H, Nakata T, et al. Deformation behavior of ultra-strong and ductile Mg-Gd-Y-Zn-Zr alloy with bimodal microstructure [J]. Metall. Mater. Trans., 2018, 49A: 1931
22 Go Y, Jo S M, Park S H, et al. Microstructure and mechanical properties of non-flammable Mg-8Al-0.3Zn-0.1Mn-0.3Ca-0.2Y alloy subjected to low-temperature, low-speed extrusion [J]. J. Alloys Compd., 2018, 739: 69
doi: 10.1016/j.jallcom.2017.12.229
23 Zhang H, Wang H Y, Wang J G, et al. The synergy effect of fine and coarse grains on enhanced ductility of bimodal-structured Mg alloys [J]. J. Alloys Compd., 2019, 780: 312
doi: 10.1016/j.jallcom.2018.11.229
24 Luo X, Huang T L, Wang Y H, et al. Strong and ductile AZ31 Mg alloy with a layered bimodal structure [J]. Sci. Rep., 2019, 9: 5428
doi: 10.1038/s41598-019-41987-4 pmid: 30932008
25 Zheng R X, Bhattacharjee T, Gao S, et al. Change of deformation mechanisms leading to high strength and large ductility in Mg-Zn-Zr-Ca Alloy with fully recrystallized ultrafine grained microstructures [J]. Sci. Rep., 2019, 9: 11702
doi: 10.1038/s41598-019-48271-5 pmid: 31406235
26 Zheng R X, Bhattacharjee T, Shibata A, et al. Simultaneously enhanced strength and ductility of Mg-Zn-Zr-Ca alloy with fully recrystallized ultrafine grained structures [J]. Scr. Mater., 2017, 131: 1
doi: 10.1016/j.scriptamat.2016.12.024
27 Luo X, Feng Z Q, Yu T B, et al. Microstructural evolution in Mg-3Gd during accumulative roll-bonding [J]. Mater. Sci. Eng., 2020, A772: 138763
28 Tsuji N, Ito Y, Saito Y, et al. Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing [J]. Scr. Mater., 2002, 47: 893
doi: 10.1016/S1359-6462(02)00282-8
29 Huang X X, Hansen N, Tsuji N. Hardening by annealing and softening by deformation in nanostructured metals [J]. Science, 2006, 312: 249
pmid: 16614217
30 Kamikawa N, Huang X X, Tsuji N, et al. Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed [J]. Acta Mater., 2009, 57: 4198
doi: 10.1016/j.actamat.2009.05.017
31 Huang T L, Shuai L F, Wakeel A, et al. Strengthening mechanisms and Hall-Petch stress of ultrafine grained Al-0.3%Cu [J]. Acta Mater., 2018, 156: 369
doi: 10.1016/j.actamat.2018.07.006
32 Gao S, Chen M C, Joshi M, et al. Yielding behavior and its effect on uniform elongation in IF steel with various grain sizes [J]. J. Mater. Sci., 2014, 49: 6536
doi: 10.1007/s10853-014-8233-0
33 Tsuji N, Ogata S, Inui H, et al. Strategy for managing both high strength and large ductility in structural materials—Sequential nucleation of different deformation modes based on a concept of plaston [J]. Scr. Mater., 2020, 181: 35
doi: 10.1016/j.scriptamat.2020.02.001
34 Koike J, Kobayashi T, Mukai T, et al. The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys [J]. Acta Mater., 2003, 51: 2055
doi: 10.1016/S1359-6454(03)00005-3
35 Jain J, Cizek P, Hariharan K. Transmission electron microscopy investigation on dislocation bands in pure Mg [J]. Scr. Mater., 2017, 130: 133
doi: 10.1016/j.scriptamat.2016.11.035
36 Geng J, Chisholm M F, Mishra R K, et al. An electron microscopy study of dislocation structures in Mg single crystals compressed along [0001] at room temperature [J]. Philos. Mag., 2015, 95: 3910
doi: 10.1080/14786435.2015.1108531
37 Liu B Y, Liu F, Yang N, et al. Large plasticity in magnesium mediated by pyramidal dislocations [J]. Science, 2019, 365: 73
doi: 10.1126/science.aaw2843
38 Wu Z X, Curtin W A. The origins of high hardening and low ductility in magnesium [J]. Nature, 2015, 526: 62
doi: 10.1038/nature15364
39 Ahmad R, Yin B L, Wu Z X, et al. Designing high ductility in magnesium alloys [J]. Acta Mater., 2019, 172: 161
doi: 10.1016/j.actamat.2019.04.019
40 Wu Z X, Ahmad R, Yin B L, et al. Mechanistic origin and prediction of enhanced ductility in magnesium alloys [J]. Science, 2018, 359: 447
doi: 10.1126/science.aap8716 pmid: 29371467
41 Feng Z Q, Fu R, Lin C W, et al. TEM-based dislocation tomography: Challenges and opportunities [J]. Curr. Opin. Solid State Mater. Sci., 2020, 24: 100833
doi: 10.1016/j.cossms.2020.100833
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[4] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[5] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[6] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[7] 王凯, 晋玺, 焦志明, 乔珺威. CrFeNi中熵合金在宽温域拉伸条件下的力学行为与变形本构方程[J]. 金属学报, 2023, 59(2): 277-288.
[8] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[9] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[10] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[11] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.
[12] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[13] 张金钰, 屈启蒙, 王亚强, 吴凯, 刘刚, 孙军. 金属/高熵合金纳米多层膜的力学性能及其辐照效应研究进展[J]. 金属学报, 2022, 58(11): 1371-1384.
[14] 李少杰, 金剑锋, 宋宇豪, 王明涛, 唐帅, 宗亚平, 秦高梧. “工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织[J]. 金属学报, 2022, 58(1): 114-128.
[15] 蒋敏强, 高洋. 金属玻璃的结构年轻化及其对力学行为的影响[J]. 金属学报, 2021, 57(4): 425-438.