Please wait a minute...
金属学报  2005, Vol. 41 Issue (11): 1121-1126     
  论文 本期目录 | 过刊浏览 |
TiN含量对Ti(C, N)/NiCr金属陶瓷微观结构和力学性能的影响
王全兆; 刘 越; 关德慧; 于宝海; 陈志亮;毕 敬
中国科学院金属研究所
Effect of tin content on microstructures and mechanical properties of Ti(C,N)/NiCr cermets
WANG Quanzhao; LIU Yue; GUAN Dehui;YU Baohai; CHEN Zhiliang; BI Jing
Institute of Metal Research; The Chinese Academy of Sciences
引用本文:

王全兆; 刘越; 关德慧; 于宝海; 陈志亮; 毕敬 . TiN含量对Ti(C, N)/NiCr金属陶瓷微观结构和力学性能的影响[J]. 金属学报, 2005, 41(11): 1121-1126 .
, , , , , . Effect of tin content on microstructures and mechanical properties of Ti(C,N)/NiCr cermets[J]. Acta Metall Sin, 2005, 41(11): 1121-1126 .

全文: PDF(668 KB)  
摘要: 采用粉末冶金真空烧结方法制备了Ti(C, N)/NiCr金属陶瓷.研究了TiN含量对Ti(C, N)/NiCr金属陶瓷微观结构与力学性能的影响. 结果表明,TiN的加入既改变了金属陶瓷硬质相颗粒的尺寸,使其变小,也改变了硬质相颗粒的形貌,使其由圆形变为多边形;随TiN含量的增加,金属陶瓷的抗弯强度均出现先增加后降低的规律,但在较低的烧结温度下,抗弯强度在TiN含量为4%时达到最大值,而在较高的烧结温度下,抗弯强度在TiN含量为6%时达到最大值;硬度在TiN含量<=10%时变化不明显,TiN含量>10%时硬度急剧下降;抗弯断口以穿晶解理为主要的断裂模式.
关键词 Ti(CN)/NiCr金属陶瓷微观结构    
Abstract:Ti(C,N)/NiCr cermets were vacuum sintered by powder metallurgy technology. The effects of TiN additions on microstructures and mechanical properties of Ti(C, N)/NiCr cermets were investigated. Results revealed that the hard phase particles were refined and the morphology of the particles changed from a circular to a polygonal shape by the additions of TiN because of the formation of Ti(C,N) solid solution; With increasing TiN additions, the bonding strength increased to the maximum values at 4%TiN content during low sintering temperature and at 6%TiN content during high sintering temperature, respectively, and then decreased. Hardness changed little when TiN addition was less than 10%, but decreased dramatically when TiN addition exceeded 10%. Fracture photograph showed that trans-granular fracture was the main failure mode because of the good interface bonding strength between binding phase and ceramic hard phase.
Key wordsTi(C    N)/NiCr    cermet    microstructure
收稿日期: 2005-06-30     
ZTFLH:  TB113  
[1] Ettmayer P, Lengauer W. Powder Metall Int, 1989; 21(2): 37
[2] Ettmayer P, Kolaska H. Metall, 1989; 43: 742
[3] Ettmayer P, Kolaska H, Legnauer W, Dreyer K. Int J Refract Met Hard Mater, 1995; 13: 343
[4] Qian Z L, Xiong W H. Mater Rev, 1996; (5): 8 (钱中良,熊惟皓.材料导报,1996;(5):8)
[5] Guan D H, Yu B H, Bi J. Powder Metall Technol, 1998; 16(1): 36 (关德慧,于宝海,毕敬.粉末冶金技术,1998;16(1):36)
[6] Zhang S. Key Eng Mater, 1998; 521: 138
[7] Zhu L J, Tang M, Yu B H, Liu Y, Tian Y W. J Mater Eng, 2001; 10: 6 (朱丽娟,唐猛,于宝海,刘越,田彦文.材料工程,2001; 10:6)
[8] Liu Y, Yu B H, Guan D H, Wang Z B, Bi J. J Mater Sci Lett, 2001; 20: 619
[9] Iyori. US Pat No.4,983,212, 1991
[10] Zhang W, Jiang Y. flare Met Cem Carbide, 1997; 55: 129 (张伟,蒋勇.稀有金属与硬质合金, 1997;55:129)
[11] Liu N, Xu Y D, Li H, Li G H, Zhang L D. J Euro Ceramic Soc, 2002; 22: 2409
[12] Jung J, Kang S. Powder Metall, 2002; 45: 83
[13] Wang Q Z, Liu Y, Chen Z L, Bi J. Chin J Mater Res, 2005; 19: 354 (王全兆,刘越,陈志亮,毕敬.材料研究学报,2005;19: 354)
[14] Li C H, Yu L X, Xiong W H. Acta Mater Compos Sin, 2003; 20: 1 (李晨辉,余立新,熊惟皓.复合材料学报,2003;20:1)
[15] Jung I J, Kang S. J Mater Sci, 2000; 35: 87
[1] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[2] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[3] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[4] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[5] 李金富, 李伟. 铝基非晶合金的结构与非晶形成能力[J]. 金属学报, 2022, 58(4): 457-472.
[6] 张显程, 张勇, 李晓, 王梓萌, 贺琛贇, 陆体文, 王晓坤, 贾云飞, 涂善东. 异构金属材料的设计与制造[J]. 金属学报, 2022, 58(11): 1399-1415.
[7] 马敏静, 屈银虎, 王哲, 王军, 杜丹. Ag-CuO触点材料侵蚀过程的演化动力学及力学性能[J]. 金属学报, 2022, 58(10): 1305-1315.
[8] 王文权, 杜明, 张新戈, 耿铭章. H13钢表面电火花沉积WC-Ni基金属陶瓷涂层微观组织及摩擦磨损性能[J]. 金属学报, 2021, 57(8): 1048-1056.
[9] 王洪伟, 何竹风, 贾楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能[J]. 金属学报, 2021, 57(5): 632-640.
[10] 潘杰, 段峰辉. 非晶合金的回春行为[J]. 金属学报, 2021, 57(4): 439-452.
[11] 李宁, 黄信. 块体非晶合金的3D打印成形研究进展[J]. 金属学报, 2021, 57(4): 529-541.
[12] 周丽, 李明, 王全兆, 崔超, 肖伯律, 马宗义. 31%B4Cp/6061Al复合材料的热变形及加工图的研究[J]. 金属学报, 2020, 56(8): 1155-1164.
[13] 刘天, 罗锐, 程晓农, 郑琦, 陈乐利, 王茜. 形成Al2O3表层的奥氏体不锈钢加速蠕变实验研究[J]. 金属学报, 2020, 56(11): 1452-1462.
[14] 丁健翔,田无边,汪丹丹,张培根,陈坚,孙正明. Ag/Ti2AlC复合材料的电弧侵蚀及退化机理[J]. 金属学报, 2019, 55(5): 627-637.
[15] 李萍, 林泉, 周玉峰, 薛克敏, 吴玉程. W高压扭转显微组织演化过程TEM分析[J]. 金属学报, 2019, 55(4): 521-528.