Please wait a minute...
金属学报  2014, Vol. 50 Issue (5): 531-539    DOI: 10.3724/SP.J.1037.2013.00709
  论文 本期目录 | 过刊浏览 |
低碳高强钢合金元素配分行为对残余奥氏体和力学性能的影响
田亚强1), 张宏军1), 陈连生1), 宋进英1), 徐勇1,2), 张士宏2)
1) 河北联合大学河北省现代冶金技术重点实验室, 唐山063009
2) 中国科学院金属研究所, 沈阳110016
EFFECT OF ALLOY ELEMENTS PARTITIONINGBEHAVIOR ON RETAINED AUSTENITE ANDMECHANICAL PROPERTY IN LOW CARBONHIGH STRENGTH STEEL
TIAN Yaqiang 1), ZHANG Hongjun 1), CHEN Liansheng 1), SONG Jinying 1), XU Yong 1, 2),
ZHANG Shihong 2)
1) Hebei Key Laboratory of Modern Metallurgy Technology, Hebei United University, Tangshan 063009
2) Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
全文: PDF(18013 KB)   HTML
摘要: 

采用双相区保温+奥氏体化淬火+低温退火的热处理工艺, 研究了合金元素配分行为对C-Si-Mn系高强钢微观组织和力学性能的影响. 结果表明, 在760 ℃随着保温时间的延长, 双相区中奥氏体相的体积分数逐渐增多直至达到饱和, 而铁素体向奥氏体扩散的Mn元素含量也逐渐增多直至在两相间达到化学势平衡, 后加热至930 ℃保温120 s, 再淬火至220 ℃, 配分过程中发生了C从马氏体向奥氏体中的扩散偏聚. 经该工艺处理后实验用钢的抗拉强度为1310 MPa, 延伸率可达12%, 强塑积达到15720 MPa·%, 相比传统淬火+碳配分工艺, 双相区保温+奥氏体化淬火+低温退火的热处理工艺过程中Mn配分和C配分共同作用能够显著提高钢中残余奥氏体的含量和稳定性, 从而提高高强钢的室温成形能力.

关键词 高强钢双相区保温Mn配分C配分残余奥氏体力学性能    
Abstract:The C content in high strength steel must be controlled at a lower level for the good weldability. However, the lower level of C content will reduce the C partitioning efficiency and influence the stability of retained austenite, which leads to the decrease of the product of tensile strength and elongation of high strength steel. A novel preparation mechanism of high strength steel is to employ some kind of substitutional alloying elements, for example Mn, instead of C to partitioning to enhance the austenitic stability, which would not remarkably reduce the weldability of the steel. One low alloy C-Si-Mn steel was used in present work. The Mn partitioning behavior and its effect on the stability of the retained austenite and the mechanical property were studied by means of intercritical annealing, subsequent austenitizing, then quenching and partitioning process (I&Q&P). The results show that in the process of intercritical annealing at 760 ℃, by extending the annealing time, austenite volume fraction increases gradually until it reaches the saturation, meanwhile the Mn partitioning behavior occurs and Mn content increases gradually from ferrite to austenite until it reaches the chemical potential balance in two phases. The sample is heated to 930 ℃ for 120 s, then rapidly quenching to 220 ℃, the carbon diffuses from martensite to austenite phase in the process of partitioning. After I&Q&P process, the tensile strength of experimental steel is 1310 MPa, elongation up to 12%, the product of strength and elongation up to more than 15000 MPa·%. The steel only contains a small amount of retained austenite by only C partitioning after traditional Q&P process, while the steel contains more Mn-rich retained austenite after I&Q&P process. Hence, the content and stability of retained austenite of steel can be improved significantly, which enhance the formability at room temperature.
Key wordshigh strength steel    intercritical annealing    Mn partitioning    C partitioning    retained austenite    mechanical property
收稿日期: 2013-11-07     
ZTFLH:  TG156  
基金资助:* 国家自然科学基金项目51254004和51304186及河北省自然科学基金项目E2014209191资助
Corresponding author: CHEN Liansheng, professor, Tel: (0315)2597151, E-mail: kyc@heuu.edu.cn   
作者简介: 陈连生, 男, 1968年生, 教授, 博士

引用本文:

田亚强, 张宏军, 陈连生, 宋进英, 徐勇, 张士宏. 低碳高强钢合金元素配分行为对残余奥氏体和力学性能的影响[J]. 金属学报, 2014, 50(5): 531-539.
TIAN Yaqiang, ZHANG Hongjun, CHEN Liansheng, SONG Jinying, XU Yong, ZHANG Shihong. EFFECT OF ALLOY ELEMENTS PARTITIONINGBEHAVIOR ON RETAINED AUSTENITE ANDMECHANICAL PROPERTY IN LOW CARBONHIGH STRENGTH STEEL. Acta Metall Sin, 2014, 50(5): 531-539.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00709      或      https://www.ams.org.cn/CN/Y2014/V50/I5/531

[1] Hayami S, Furukawa T. Microalloying 75. New York: Union Carbide Corp, 1977: 311
[2] Raabe D, Ponge D, Dmitrieva O, Sander B. Scr Mater, 2009; 60: 1141
[3] Matsumura O, Sakuma Y, Takechi H. ISIJ Int, 1992; 32: 1014
[4] Matsumura O, Sakuma Y, Takechi H. ISIJ Int, 1987; 27: 570
[5] Sugimoto K, Misu M, Kobayashi M, Shirasawa H. ISIJ Int, 1993; 33: 775
[6] Bouaziz O, Guelton N. Mater Sci Eng, 2001; A319-321: 246
[7] Barnett M R. Mater Sci Eng, 2007; A464: 1
[8] Rizzo F, Martins A R, Speer J G. Mater Sci Forum, 2007; 539-543: 4476
[9] Andrade H L, Akben M G, Jonas J J. Metall Trans, 1983; 14A: 1967
[10] Hashimoto S, Ikeda S, Sugimoto K I, Miyake S. ISIJ Int, 2004; 44: 1590
[11] Speer J G, Matlock D K, De Cooman B C, Schroch J G. Acta Mater, 2003; 51: 2611
[12] Edmonds D V, Rizzo F C, De Cooman B C, Matlock D K, Speer J G. Mater Sci Eng, 2006; A438-440: 25
[13] De Cooman B C, Speer J G. In: Lee H C ed., The 3rd Int Conf on Advanced Structural Steels, Gyeongju: The Korean Institute of Metals and Materials, 2006: 798
[14] Speer J G, Rizzo F C, Matlock D K, Edmonds D V. Mater Res, 2005; 8: 417
[15] Matlock D K, Br?utigam V E, Speer J G. Mater Sci Forum, 2003; 426: 1089
[16] Xu Z Y. Mater Sci Forum, 2007; 561-565: 2283
[17] Wang X D, Zhong N, Rong Y H, Xu Z Y. J Mater Res, 2009; 24: 261
[18] Zhong N. PhD Dissertation, Shanghai Jiao Tong University, 2009
(钟 宁. 上海交通大学博士学位论文, 2009)
[19] De Moor E, Lacroix S, Clarke A J, Penning J, Speer J G. Metall Mater Trans, 2008, 39A: 2586
[20] Dong X C, Zhang X, Chen Y Q. Iron Steel Vanadium Titanium, 2011; 32: 62
(董现春, 张 熹, 陈延清. 钢铁钒钛, 2011, 32: 62)
[21] Zhu B K, Li S B, Zhou H, Yang P. Welding Joining, 2007; (4): 40
(朱丙坤, 李少兵, 周 浩, 杨 澍. 焊接, 2007; (4): 40)
[22] Saleh M H, Prietner R. Mater Proc Technol, 2001; 113: 587
[23] Toji Y, Yamashita T, Nakajima K, Okuda K, Matsuda H, Hasegawa K, Seto K. ISIJ Int, 2011; 51: 818
[24] Lee S, Lee S J, De Cooman B C. Sci Mater, 2011; 65: 225
[25] Lee S J, Lee S, De Cooman B C. Sci Mater, 2011; 64: 649
[26] Krauss G. In: Rohatgi P K, Yust C S eds., Tribology of Composite Materials, Materials Park, Ohio: ASM International, 1990: 56
[27] Koistinen D P, Marburger R E. Acta Metall, 1959; 7: 59
[28] Fan X. Metallic X-ray Physics. Beijing: Mechanical Industry Press, 1989: 159
(范 雄. 金属X射线学. 北京: 机械工业出版社, 1989: 159)
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[3] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[4] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[5] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[6] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[7] 李金许,王伟,周耀,刘神光,付豪,王正,阚博. 汽车用先进高强钢的氢脆研究进展[J]. 金属学报, 2020, 56(4): 444-458.
[8] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[9] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[10] 罗海文,沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512.
[11] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[12] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[13] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[14] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[15] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.