Please wait a minute...
金属学报  2014, Vol. 50 Issue (5): 524-530    DOI: 10.3724/SP.J.1037.2013.00681
  论文 本期目录 | 过刊浏览 |
V-Ti微合金钢的组织性能及相间析出行为*
陈俊1), 吕梦阳2), 唐帅1), 刘振宇1), 王国栋1)
1) 东北大学轧制技术及连轧自动化国家重点实验室, 沈阳 110819
2) 东北大学材料与冶金学院, 沈阳 110819
MICROSTRUCTURE, MECHANICAL PROPERTIES AND INTERPHASE PRECIPITATION BEHAVIORS IN V-Ti MICROALLOYED STEEL
CHEN Jun 1), Lü Mengyang 2), TANG Shuai 1), LIU Zhenyu 1), WANG Guodong 1)
1) State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
2) School of Materials and Metallurgy, Northeastern University, Shenyang 110819
全文: PDF(8371 KB)   HTML
摘要: 

采用热模拟实验研究了等温温度对V-Ti微合金钢组织性能及相间析出行为的影响规律, 利用OM和TEM分析了不同等温温度下实验钢的组织特征. 结果表明, 不同等温温度下均可得到大量铁素体组织, 随等温温度的降低, 铁素体体积分数增加, 铁素体晶粒尺寸减小. 不同等温温度下均可观察到平面相间析出, 且降低等温温度可显著细化相间析出列间距和析出粒子尺寸. 纳米碳化物具有NaCl型晶体结构, 晶格常数约为0.436 nm, 同铁素体基体满足(100)carbide//(100)ferrite和[011]carbide//[001]ferrite的B-N关系. 在680 ℃下等温30 min, 沉淀强化量可达到360.6 MPa.

关键词 V-Ti微合金钢等温温度显微组织相间析出Vickers硬度    
Abstract:The microstructure, mechanical properties and precipitation behaviors in a low carbon V-Ti microalloyed steel were investigated using thermal simulation. The microstructural characteristics of tested steel were analyzed using OM and TEM. The results show that the larger volume fraction of ferrite can be obtained for different isothermal temperatures. The ferrite volume fraction is increased and ferrite grain size is reduced as the isothermal temperature is lowered. The planar interphase precipitation can be observed for different isothermal temperatures, and both sheet spacing and precipitates size are refined by lowering isothermal temperature. Moreover, the nanometer-sized carbides have a NaCl-type crystal structure with a lattice parameter of about 0.436 nm and they can obey one variant of Baker-Nutting (B-N) orientation relationship of (100)carbide//(100)ferrite and [011]carbide//[001]ferrite. The precipitation hardening for the specimen treated at 680 ℃ for 30 min can reach 360.6 MPa.
Key wordsV-Ti microalloyed steel    isothermal temperature    microstructure    interphase precipitation    Vickers-hardness
收稿日期: 2013-10-28     
ZTFLH:  TG142.33  
基金资助:* 国家自然科学基金项目51204049和中央高校基本科研业务费专项资金项目N110607003资助
Corresponding author: TANG Shuai, lecturer, Tel: (024)83681803, E-mail: tangshuai@ral.neu.edu.cn   
作者简介: 陈 俊, 男, 1982年生, 博士生

引用本文:

陈俊, 吕梦阳, 唐帅, 刘振宇, 王国栋. V-Ti微合金钢的组织性能及相间析出行为*[J]. 金属学报, 2014, 50(5): 524-530.
CHEN Jun, Lü Mengyang, TANG Shuai, LIU Zhenyu, WANG Guodong. MICROSTRUCTURE, MECHANICAL PROPERTIES AND INTERPHASE PRECIPITATION BEHAVIORS IN V-Ti MICROALLOYED STEEL. Acta Metall Sin, 2014, 50(5): 524-530.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00681      或      https://www.ams.org.cn/CN/Y2014/V50/I5/524

[1] Chen J, Tang S, Liu Z Y, Wang G D. Acta Metall Sin, 2012; 48: 441
(陈 俊, 唐 帅, 刘振宇, 王国栋. 金属学报, 2012; 48: 441)
[2] Guo J, Shang C J, Yang S W, Guo H, Wang X M, He X L. Mater Des, 2009; 30: 129
[3] Manohar P A, Chandra T, Killmore C R. ISIJ Int, 1996; 36: 1486
[4] Chen J, Chen X W, Tang S, Liu Z Y, Wang G D. Mater Sci Forum, 2013; 749: 243
[5] Cizek P, Wynne B P, Davies C H J, Muddle B C, Hodgson P D. Metall Mater Trans, 2002; 33A: 1331
[6] Funakawa Y, Shiozaki T, Tomita K, Yamamoto T, Maeda E. ISIJ Int, 2004; 44: 1945
[7] Yen H W, Chen P Y, Huang C Y, Yang J R. Acta Mater, 2011; 59: 6264
[8] Kestenbach H J, Campos S S, Morales E V. Mater Sci Technol, 2006; 22: 615
[9] Jang J H, Heo Y U, Lee C H, Bhadeshia H K D H, Suh D W. Mater Sci Technol, 2013; 29: 309
[10] Yen H W, Huang C Y, Yang J R. Scr Mater, 2009; 61: 616
[11] Chen C Y, Yen H W, Kao F H, Li W C, Huang C Y, Yang J R, Wang S H. Mater Sci Eng, 2009; A499: 162
[12] Okamoto R, Borgenstam A, ?gren J. Acta Mater, 2010; 58: 4783
[13] Mukherjee S, Timokhina I B, Zhu C, Ringer S P, Hodgson P D. Acta Mater, 2013; 61: 2521
[14] Sakuma T, Honeycombe R W K. Met Sci, 1984; 18: 449
[15] Dunlop G L, Carlsson C J, Frimodig G. Metall Trans, 1978; 9A: 261
[16] Freeman S, Honeycombe R W K. Met Sci, 1977; 11: 59
[17] Honeycombe R W K, Mehl Medalist R F. Metall Trans, 1976; 7A: 915
[18] Zhang Y J, Miyamoto G, Shinbo K, Furuhara T. Scr Mater, 2013; 69: 17
[19] Davenport A T, Berry F G, Honeycombe R W K. Met Sci, 1968; 2: 104
[20] Foreman A J E, Makin M J. Can J Phys, 1967; 45: 511.
[21] Pickering F B. Physical Metallurgy and the Design of Steels. London: Applied Science Publishing Ltd., 1978: 63
[22] Taylor K A. Scr Metall Mater, 1995; 32: 7
[23] Misra R D K, Nathani H, Hartmann J E, Siciliano F. Mater Sci Eng, 2005; A394: 339
[24] Brito R M, Kestenbach H J. J Mater Sci, 1981; 16: 1257
[25] Chen J, Lv M Y, Tang S, Liu Z Y, Wang G D. Mater Sci Eng, 2014; A594: 389
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[3] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[4] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[5] 肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.
[6] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[7] 蓝春波,梁家能,劳远侠,谭登峰,黄春艳,莫羡忠,庞锦英. 冷轧态Ti-35Nb-2Zr-0.3O合金的异常热膨胀行为[J]. 金属学报, 2019, 55(6): 701-708.
[8] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[9] 刘巧沐,黄顺洲,刘芳,杨艳,南宏强,张东,孙文儒. B含量对K417G合金凝固过程中组织演变和力学性能的影响[J]. 金属学报, 2019, 55(6): 720-728.
[10] 黄森森,马英杰,张仕林,齐敏,雷家峰,宗亚平,杨锐. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019, 55(6): 741-750.
[11] 安同邦,魏金山,单际国,田志凌. 保护气成分对1000 MPa级高强熔敷金属组织特征的影响[J]. 金属学报, 2019, 55(5): 575-584.
[12] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[13] 覃嘉宇, 李小强, 金培鹏, 王金辉, 朱云鹏. 碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究[J]. 金属学报, 2019, 55(12): 1537-1543.
[14] 邵毅, 李彦默, 刘晨曦, 严泽生, 刘永长. 低碳铁素体不锈钢高频直缝电阻焊管退火工艺优化[J]. 金属学报, 2019, 55(11): 1367-1378.
[15] 何波, 邢盟, 杨光, 邢飞, 刘祥宇. 成分梯度对激光沉积制造TC4/TC11连接界面组织和性能的影响[J]. 金属学报, 2019, 55(10): 1251-1259.