Please wait a minute...
金属学报  2014, Vol. 50 Issue (5): 540-546    DOI: 10.3724/SP.J.1037.2013.00698
  论文 本期目录 | 过刊浏览 |
N2流量对HIPIMS制备TiSiN涂层结构和力学性能的影响*
王振玉1,2), 徐胜3), 张栋1), 刘新才2), 柯培玲1), 汪爱英1)
1) 中国科学院宁波材料技术与工程研究所海洋新材料与应用技术重点实验室, 宁波 315201
2) 宁波大学材料科学与化学工程学院, 宁波 315211
3) 高鸿集团有限公司, 湖州 313000
INFLUENCE OF N2 FLOW RATE ON STRUCTURES AND MECHANICAL PROPERTIES OF TiSiN COATINGS PREPARED BY HIPIMS METHOD
WANG Zhenyu 1, 2), XU Sheng 3), ZHANG Dong 1), LIU Xincai 2), KE Peiling 1), WANG Aiying 1)
1) Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201
2) Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211
3) TOPHONEST Co. Ltd, Huzhou 313000
全文: PDF(8648 KB)   HTML
摘要: 

采用高功率脉冲磁控溅射 (HIPIMS) 技术在N2流量为10~50 mL/min下沉积TiSiN涂层, 利用台阶仪, XRD, XPS, SPM, SEM, HRTEM和纳米压痕仪对涂层的沉积速率、相结构、成分、形貌和力学性能进行了分析, 并研究了不同N2流量对等离子体放电特性的影响. 结果表明, 在不同N2流量下, TiSiN涂层均具有非晶Si3N4包裹纳米晶TiN复合结构, 涂层表面粗糙度Ra为0.9~1.7 nm; 随N2流量的增加, 等离子体的放电程度减弱, 离化率降低, TiSiN涂层沉积速率降低, 其Ti含量逐渐降低, Si含量逐渐增加, 但变化幅度较小; 涂层择优取向随N2流量的增加发生改变, 晶粒尺寸逐渐增大, 硬度和弹性模量逐渐降低, 涂层硬度最高为(35.25±0.74) GPa.

关键词 高功率脉冲磁控溅射TiSiN涂层放电特性复合结构力学性能    
Abstract:Over the past years, TiSiN coatings have gained increasing importance in the field of cutting tool coatings due to its enhanced hardness and superior oxidation resistance properties produced by the nanocomposite microstructure of TiN nanocrystals embedded in an amorphous Si3N4 matrix. Many methods have been developed to prepare TiSiN coatings, typically named by the DC magnetron sputtering (DCMS) technique and cathodic arc ion plating (AIP), whereas limited studies have been carried out on the deposition of nanocomposite coatings using the high power impulse magnetron sputtering (HIPIMS) approach. The TiSiN coatings were reactively magnetron sputtered in mixed Ar/N2 precursor gases in a new HIPIMS system with different flow rate of N2 in this work. The deposition rate, crystal structure, composition, surface morphology, microstructure and mechanical properties were investigated systematically by surface profilometer, XRD, XPS, SPM, SEM, HRTEM and nano-indentation and the plasma discharge also was studied. The results show that increasing the flow rate of N2 caused the decrease of deposition rate as expected, accompanying with the change of preferred orientation from (200) orientation to (220) orientation and the decreased compactness, discharge degree and ionization rate. Contrary to the changes of Ti content, Si content gradually increased with increasing the flow rate of N2, but their changing scale were small. Combined with XRD and XPS analysis, the results indicated that the coatings were composed of crystalline TiN, amorphous Si3N4 and free Si. Besides, free Si disappeared with further increasing the flow rate of N2. This nanocomposite structure can ultimately be assessed by HRTEM where individual grains and the amorphous regions can be distinguished. In addition, the grain size increased gradually with increasing the flow rate of N2. Furthermore, both the hardness and elastic modulus linearly decreased with increasing the flow rate of N2 .
Key wordshigh power impulse magnetron sputtering    TiSiN coating    discharge characteristic    nanocomposite structure    mechanical property
收稿日期: 2013-11-04     
ZTFLH:  TB3  
基金资助:国家重点基础研究发展计划项目2013CB632302和宁波市创新团队项目2011B81001资助
Corresponding author: KE Peiling, associate professor, Tel: (0574)86685036, E-mail: Kepl@nimte.ac.cn   
作者简介: 王振玉, 男, 1987年生, 硕士生

引用本文:

王振玉, 徐胜, 张栋, 刘新才, 柯培玲, 汪爱英. N2流量对HIPIMS制备TiSiN涂层结构和力学性能的影响*[J]. 金属学报, 2014, 50(5): 540-546.
WANG Zhenyu, XU Sheng, ZHANG Dong, LIU Xincai, KE Peiling, WANG Aiying. INFLUENCE OF N2 FLOW RATE ON STRUCTURES AND MECHANICAL PROPERTIES OF TiSiN COATINGS PREPARED BY HIPIMS METHOD. Acta Metall Sin, 2014, 50(5): 540-546.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00698      或      https://www.ams.org.cn/CN/Y2014/V50/I5/540

[1] Xu J H, Ju H B, Yu L H. Acta Metall Sin, 2012; 48: 1132
(许俊华, 鞠洪博, 喻利花. 金属学报, 2012; 48: 1132)
[2] Kim T S, Park S S, Lee B T. Mater Lett, 2005; 59: 3929
[3] Procházka J, Karvánková P, Veprek-Heijman M G J, Veprek S. Mater Sci Eng, 2004; A384: 102
[4] Veprek S, Reiprich S, Li S Z. Appl Phys Lett, 1995; 66: 2640
[5] Veprek S, Reiprich S. Thin Solid Films, 1995; 268: 64
[6] Veprek S, Veprek-Heijiman M G J, Karvankova P, Prochazka J. Thin Solid Films, 2005; 476: 1
[7] Shi J, Pei Z L, Gong J, Sun C, Jiang X. Acta Metall Sin, 2012; 48: 1349
(时 婧, 裴志亮, 宫 骏, 孙 超, 姜 辛. 金属学报, 2012; 48: 1349)
[8] Wu Z Z, Tian X B, Cheng S D, Gong C Z, Yang S Q. Acta Metall Sin, 2012; 48: 283
(吴忠振, 田修波, 程思达, 巩春志, 杨士勤. 金属学报, 2012; 48: 283)
[9] Veprek S. Thin Solid Films, 1998; 317: 449
[10] Musil J, Vlcek J, Zeman P. Adv Appl Ceram, 2008; 107: 148
[11] Mei F, Shao N, Hu X, Li G, Gu M. Mater Lett, 2005; 59: 2442
[12] Chang C L, Lin C T, Tsai P C, Ho W Y, Liu W J, Wang D Y. Surf Coat Technol, 2008; 202: 5516
[13] Yang S M, Chang Y Y, Wang D Y, Lin D Y, Wu W T. J Alloys Compd, 2007; 440: 375
[14] Qin X P, Ke P L, Wang A Y, Kim K H. Surf Coat Technol, 2013; 228: 275
[15] Oks E, Anders A. J Appl Phys, 2009; 105: 093304
[16] Wu B L, Wang Y N, Wang G, Zhao X, Zuo L, Liang Z D. J Mater Res, 2000; 14: 634
(武保林, 王轶农, 王 刚, 赵 骧, 左 良, 梁志德. 材料研究学报, 2000; 14: 634)
[17] Huang P K, Yeh J W. Surf Coat Technol, 2009; 203: 1891
[18] Chawla V, Jayaganthan R, Chandra R. Surf Coat Technol, 2010; 204: 1582
[19] Uvarov V, Popov I. Mater Charact, 2007; 58: 883
[20] Pelleg J, Zevin L Z, Lungo S, Croitoru N. Thin Solid Films, 1991; 197: 117
[21] Chakrabarti K, Jeong J J, Hwang S K, Yoo Y C, Lee C M. Thin Solid Films, 2002; 406: 159
[22] Lin J L, Wang B, Ou Y X, William D S, Isaac D, John J M. Surf Coat Technol, 2013; 216: 251
[23] Machunze R, Ehiasarian A P, Tichelaar F D, Janssen G C A M. Thin Solid Films, 2009; 518: 1561
[24] Chawla V, Jayaganthan R, Chandra R. Mater Charact, 2008; 59: 1015
[25] Moulder J F, Sticke W F, Sobol P E, Bomben K D. Handbook of X-Ray Photoelectron Spectroscopy. Eden Prairie: Perkin-Elmer Corporation, 1992: 1
[26] Yang T S, Yang M C, Shiu C B, Chang W K, Wong M S. Appl Surf Sci, 2006; 252: 3729
[27] Cardinaud C H, Lemperiere G, Peignon M C, Jouan P Y. Appl Surf Sci, 1993; 68: 595
[28] Casagrande A, Glisenti A, Lanzoni E, Tondello E, Mirenghi L, Casarin M, Bertomcello R. Surf Interf Anal, 1992; 18: 525
[29] Du H, Tressler R E, Spear K E, Pantano C G. Electrochem J Soc, 1989; 136: 1527
[30] Wang J F, Ma D Y, Song Z X, Tang W, Xu K W. Rare Met Mater Eng, 2009; 38: 753
[31] Veprek S. Surf Coat Technol, 1997; 97: 15
[32] Kim S H, Kim J K, Kim K H. Thin Solid Films, 2002; 420-421:360
[33] Ohring M. The Materials Science of Thin Films. San Diego: Academic Press, 1992: 182
[34] Van Vlack L H. Elements of Materials Science and Engineering. New York: Addition-Wesley Publishing Company, 1989: 554
[35] Patscheider J, Zrhnder T, Diserens M. Surf Coat Technol, 2001; 146-147: 201
[36] Hakamada M, Nakamota Y, Matsumoto H, Iwasaki H, Chen Y, Kusuda H. Mater Sci Eng, 2007; A457: 120
[1] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[2] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[3] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[4] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[5] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[6] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[7] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[8] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[9] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[10] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[11] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[12] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[13] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.
[14] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[15] 陈兴品,李文佳,任平,曹文全,刘庆. C含量对Fe-Mn-Al-C低密度钢组织和性能的影响[J]. 金属学报, 2019, 55(8): 951-957.