Please wait a minute...
金属学报  2013, Vol. 49 Issue (11): 1457-1461    DOI: 10.3724/SP.J.1037.2013.00535
  论文 本期目录 | 过刊浏览 |
Ti-45Al-8Nb合金PST晶体片层取向与力学性能的关系
彭英博,陈锋,王敏智,苏翔,陈光
南京理工大学材料评价与设计教育部工程研究中心, 南京 210094
RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti-45Al-8Nb ALLOY
PENG Yingbo, CHEN Feng, WANG Minzhi, SU Xiang, CHEN Guang
Engineering Research Center of Materials Behavior and Design, Ministry of Education,Nanjing University of Science and Technology, Nanjing 210094
引用本文:

彭英博,陈锋,王敏智,苏翔,陈光. Ti-45Al-8Nb合金PST晶体片层取向与力学性能的关系[J]. 金属学报, 2013, 49(11): 1457-1461.
PENG Yingbo, CHEN Feng, WANG Minzhi, SU Xiang, CHEN Guang. RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti-45Al-8Nb ALLOY[J]. Acta Metall Sin, 2013, 49(11): 1457-1461.

全文: PDF(1495 KB)  
摘要: 

通过对片层取向与单轴应力方向呈不同角度的Ti-45Al-8Nb (原子分数, %)合金多孪晶合成(PST)晶体进行压缩实验, 获得了室温压缩性能,分析了断口形貌及断裂失效的原因, 并对Nb的强化作用进行了分析.PST晶体片层取向平行或垂直于应力方向时, 剪切变形沿垂直于片层界面的方向前进;而当片层取向与生长方向夹角为45°时, 剪切变形沿平行于片层界面的方向前进.0°取向PST晶体屈服强度最高, 可达1296 MPa; 45°取向PST晶体塑性最好,压缩塑性应变约为1.1%, 但屈服强度最低仅为847 MPa. Nb可以细化片层组织,提高位错运动的分切应力并降低层错能, 使室温屈服强度显著提高.

关键词 TiAl金属间化合物PST晶体片层取向力学性能    
Abstract

Room temperature compression performance of polysynthetic twinned crystal (PST crystal) in Ti-45Al-8Nb (atomic fraction, %) alloys with different angles between lamellar orientation and uniaxial stress direction was studied. The causes of the fracture failure were investigated by the fracture surface and the effects of the Nb element on strengthening were also studied. It was found that when the lamellar orientation in the PST crystal was paralleled or vertical to the stress direction, shear deformation was vertical to lamellar interface, and when the angle of lamellar orientation to the stress direction was 45°, the shear deformation was paralleled to lamellar interface. The yield strength of the 0° PST crystal was the maximum which was up to 1296 MPa. The PST crystal of 45° had the best compression plastic strain of approximately 1.1%, but its yield strength was the minimum of only 847 MPa. Nb element could refine lamellar structure and improve the room temperature yield strength significantly through increasing shear stress of dislocation motion and reducing the stacking fault energy.

Key wordsTiAl intermetallics    polysynthetic twinned crystal (PST crystal)    lamellar orientation    mechanical property
收稿日期: 2013-09-02     
基金资助:

国家重点基础研究发展计划项目2011CB605504和2012年度新金属材料国家重点实验室开放基金项目2012-ZD01资助

作者简介: 彭英博, 男, 1985年生, 博士生

[1] Kear B H, Thompson E R.  Science, 1980; 208: 847

[2] Taub A I, Fleischer R L.  Science, 1989; 243: 616
[3] Malinov S, Sha W.  Mater Sci Eng, 2004; A365: 202
[4] Cui W F, Liu C M, Bauer V, Christ H J.  Intermetallics, 2007; 15: 675
[5] Lapin J.  Intermetallics, 2006; 14: 115
[6] Fujiwara T, Nakamura A, Hosomia M, Nishitani S R, Shirai Y, Yamaguchi M.Philos Mag, 1990; 61A: 591
[7] Inui H, Nakamura A, Yamaguchi M.  Acta Metall, 1992; 40: 3059
[8] Yokoshima S, Yamaguchi M.  Acta Mater, 1996; 44: 873
[9] Fu H Z, Guo J J, Su Y Q, Liu L, Xu D M, Li J S.  Chin J Nonferrous Met, 2003; 13: 797
(傅恒志, 郭景杰, 苏彦庆, 刘林, 徐达鸣, 李金山. 中国有色金属学报, 2003; 13:797)
[10] Matsuo T, Nozaki T, Asai T, Chang S Y, Takeyama M.  Intermetallics, 1998; 6: 695
[11] Matsuo T, Nozaki T, Takeyama M.  Mater Sci Eng, 2002; A329-331: 774
[12] Huang H C.  US Pat 4879092, 1989
[13] Zhang W J, Chen G L, Wang Y D, Sun Z Q.  Scr Mater, 1993; 28: 1113
[14] Chen G L, Zhang W J, Liu Z C, Li S J, Kim Y W.In: Kim Y W, Dimiduk D M, Loretto M H eds., Gamma Titanium Aluminides 1999. Warrendale, PA: TMS, 1999: 371
[15] Liu Z C, Lin J P, Li S J, Chen G L.  Intermetallics, 2002; 10: 653
[16] Zhang W J, Liu Z C, Chen G L, Kim Y W.  Mater Sci Eng, 1999; A271: 416
[17] Chen G L, Zhang L C.  Mater Sci Eng, 2002; A329: 163
[18] Chen G L, Xu X J, Teng Z K, Wang Y L, Lin J P.  Intermetallics, 2007; 15: 625
[19] Paul J H, Appel F, Wagner R.  Acta Mater, 1998; 46: 1075

[20] Zhang W J, Deevia S C, Chen G L.  Intermetallics, 2002; 10: 403

[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[11] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[14] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[15] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.