Please wait a minute...
金属学报  2013, Vol. 49 Issue (11): 1462-1466    DOI: 10.3724/SP.J.1037.2013.00546
  论文 本期目录 | 过刊浏览 |
固液反应法制备增强体层状分布的TiAl基复合材料板
崔喜平,耿林,范国华,郑镇洙,王桂松
哈尔滨工业大学材料科学与工程学院, 哈尔滨 150001
TiAl-BASED COMPOSITE SHEET WITH MULTI-LAYER DISTRIBUTED REINFORCEMENT PREPARED BY SOLID-LIQUID REACTION
CUI Xiping, GENG Lin, FANG Kun, FAN Guohua, ZHENG Zhenzhu, WANG Guisong
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001
引用本文:

崔喜平,耿林,范国华,郑镇洙,王桂松. 固液反应法制备增强体层状分布的TiAl基复合材料板[J]. 金属学报, 2013, 49(11): 1462-1466.
. TiAl-BASED COMPOSITE SHEET WITH MULTI-LAYER DISTRIBUTED REINFORCEMENT PREPARED BY SOLID-LIQUID REACTION[J]. Acta Metall Sin, 2013, 49(11): 1462-1466.

全文: PDF(1836 KB)  
摘要: 

将纯Ti箔和TiB2/Al复合材料箔交替堆垛, 通过热轧获得Ti-(TiB2/Al)叠层,随后进行热处理使固态Ti和液态TiB2/Al快速发生化学反应,近净成形制备出增强体TiB2颗粒呈层状分布的TiAl基复合材料板材.研究热处理过程中的相转变和组织演变规律,并测试和评价了最终层状TiB2-TiAl复合材料板材拉伸性能. 结果表明:固态Ti和液态TiB2/Al复合材料反应首先生成多孔结构TiAl3相,1300℃, 2 h, 50 MPa的压力烧结实现材料致密化,随后热处理时TiAl3与Ti继续发生反应扩散,最终生成全层片结构(α2-Ti3Al+γ-TiAl)层, TiB2不参与任何反应,且呈层状分布于基体(α2+γ)层中.TiB2-rich层阻碍了(α2+γ)层的全层片组织粗化,并大幅提高了层状TiB2-TiAl复合材料板材的高温拉伸性能.

关键词 TiAl基复合材料板 热处理 层状结构 力学性能    
Abstract

TiAl-based alloy have potential as high temperature structural materials for aerospace applications, especially for thermal protection systems in aerospace vehicles including skin materials. Unfortunately, the ductility and formability of TiAl-based alloys are rather poor and thus γ-TiAl sheets or foils are quite difficult to be manufactured by traditional methods and still far from practical applications. In the present work, commercial pure Ti foils and in-house fabricated TiB2/Al composite foils were alternately stacked and rolled to prepare Ti-(TiB2/Al) laminates, and then heat treatment was utilized to make liquid Al react with solid Ti,and finally TiAl-based composite sheet with multi-layer distributed reinforcement TiB2 particles were achieved. This method avoided the direct deformation of brittle TiAl billets and thus the near-net-shape processing of TiAl-based alloys sheets was feasible. Phase transformation and microstructure evolution during heat treatment were investigated and mechanical properties of the resulting micro-laminated TiB2-TiAl composite sheets were evaluated. The results showed that porous TiAl3 layers were produced by the reaction between liquid Al and solid Ti because of Kirkendall effect, and the following densification treatment under 50 MPa at 1300℃ for 2 h significantly improved the relative density of material. Subsequently, the reaction diffusion between TiAl3 and residual Ti proceeded in the following heat treatment, and finally fully lamellar (α2-Ti3Al+γ-TiAl) layers were obtained. TiB2 particles did not participate in any reaction and remained, and displayed multi-layered distribution in the matrix(α2-Ti3Al+γ-TiAl) layers. TiB2-rich layer hindered the coarsening of lamellar colony of (α2-Ti3Al+γ-TiAl) layer. Tensile properties at 800℃ of multi-layered TiB2-TiAl composite sheets remarkably increased because of an increase of energy dissipation caused by plastic deformation.

收稿日期: 2013-09-04     
基金资助:

国家自然科学基金项目 51071058和51101041, 中国博士后科学基金项目2013M541370和中央高校基本科研业务费专项资金

作者简介: 崔喜平, 男, 1980年生, 博士

[1] Zhong H, Yang Y L, Li J S, Wang J, Zhang T B, Li S, Zhang J.  Mater Lett, 2012; 83: 198

[2] Wu X H.  Intermetallics, 2006; 14: 1114
[3] Draper S L, Krause D, Lerch B, Locci I E, Doehnert B, Nigam R, Das G, Rissbacher K.Mater Sci Eng, 2007; A464: 330
[4] Liu R C, Wang Z, Liu D, Bai C G, Cui Y Y, Yang R.  Acta Metall Sin, 2013; 49: 642
(刘仁慈, 王震, 刘冬, 柏春光, 崔玉友, 杨锐.金属学报, 2013; 49: 642)
[5] David E A, Jeffrey A H.  JOM. 1994; 3: 31
[6] Fukutomi H, Ueno M, Nakamura M, Suzuki T, Kikuchi S.  Mater Trans JIM, 1999; 40: 654
[7] Luo J G, Acoff V L.  Mater Sci Eng, 2006; A433: 334
[8] Xu L, Cui Y Y, Hao Y L, Yang R.  Mater Sci Eng, 2006; A435-436: 638
[9] Jakob A, Speidel M O.  Mater Sci Eng, 1994; A189: 134
[10] Chaudhari G P, Acoff V L.  Intermetallics, 2010; 18: 472
[11]Shu S L, Xing B, Qiu F, Jin S B, Jiang Q C.  Mater Sci Eng, 2013; A560: 596
[12] Sun T, Wang Q, Sun D L, Wu G H, Na Y.  Wear, 2010; 268: 693
[13] Chaudhari G P, Acoff V L.  Compos Sci Technol, 2009; 69: 1667
[14] Yang R, Cui Y Y, Dong L M, Jia Q.  J Mater Process Technol, 2003; 135: 185
[15] Bravo P M, Madariaga I, Ostolaza K, Tello M.  Scr Mater, 2005; 53: 1142

[16] Wang J N, Xie K.  Scr Mater, 2000; 43: 442

[1] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[2] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[3] 杨累, 赵帆, 姜磊, 谢建新. 机器学习辅助2000 MPa级弹簧钢成分和热处理工艺开发[J]. 金属学报, 2023, 59(11): 1499-1512.
[4] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[5] 韩林至, 牟娟, 周永康, 朱正旺, 张海峰. 热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2 高熵合金组织结构与力学性能的影响[J]. 金属学报, 2022, 58(9): 1159-1168.
[6] 李钊, 江河, 王涛, 付书红, 张勇. GH2909低膨胀高温合金热处理中的组织演变行为[J]. 金属学报, 2022, 58(9): 1179-1188.
[7] 张家榕, 李艳芬, 王光全, 包飞洋, 芮祥, 石全强, 严伟, 单以银, 杨柯. 热处理对一种双峰晶粒结构超低碳9Cr-ODS钢显微组织与力学性能的影响[J]. 金属学报, 2022, 58(5): 623-636.
[8] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[9] 袁波, 郭明星, 韩少杰, 张济山, 庄林忠. 添加3%ZnAl-Mg-Si-Cu合金非等温时效析出行为的影响[J]. 金属学报, 2022, 58(3): 345-354.
[10] 卢磊, 赵怀智. 异质纳米结构金属强化韧化机理研究进展[J]. 金属学报, 2022, 58(11): 1360-1370.
[11] 武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化[J]. 金属学报, 2022, 58(11): 1349-1359.
[12] 陈润, 王帅, 安琦, 张芮, 刘文齐, 黄陆军, 耿林. 热挤压与热处理对网状TiBw/TC18复合材料组织及性能的影响[J]. 金属学报, 2022, 58(11): 1478-1488.
[13] 王迪, 黄锦辉, 谭超林, 杨永强. 激光增材制造过程中循环热输入对组织和性能的影响[J]. 金属学报, 2022, 58(10): 1221-1235.
[14] 王文权, 王苏煜, 陈飞, 张新戈, 徐宇欣. 选区激光熔化成形TiN/Inconel 718复合材料的组织和力学性能[J]. 金属学报, 2021, 57(8): 1017-1026.
[15] 王悦, 王继杰, 张昊, 赵泓博, 倪丁瑞, 肖伯律, 马宗义. 热处理对激光选区熔化AlSi10Mg合金显微组织及力学性能的影响[J]. 金属学报, 2021, 57(5): 613-622.