Please wait a minute...
金属学报    DOI: 10.3724/SP.J.1037.2013.00546
  论文 本期目录 | 过刊浏览 |
固液反应法制备增强体层状分布的TiAl基复合材料板
崔喜平,耿林,范国华,郑镇洙,王桂松
哈尔滨工业大学材料科学与工程学院, 哈尔滨 150001
TiAl-BASED COMPOSITE SHEET WITH MULTI-LAYER DISTRIBUTED REINFORCEMENT PREPARED BY SOLID-LIQUID REACTION
CUI Xiping, GENG Lin, FANG Kun, FAN Guohua, ZHENG Zhenzhu, WANG Guisong
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001
全文: PDF(1836 KB)  
摘要: 

将纯Ti箔和TiB2/Al复合材料箔交替堆垛, 通过热轧获得Ti-(TiB2/Al)叠层,随后进行热处理使固态Ti和液态TiB2/Al快速发生化学反应,近净成形制备出增强体TiB2颗粒呈层状分布的TiAl基复合材料板材.研究热处理过程中的相转变和组织演变规律,并测试和评价了最终层状TiB2-TiAl复合材料板材拉伸性能. 结果表明:固态Ti和液态TiB2/Al复合材料反应首先生成多孔结构TiAl3相,1300℃, 2 h, 50 MPa的压力烧结实现材料致密化,随后热处理时TiAl3与Ti继续发生反应扩散,最终生成全层片结构(α2-Ti3Al+γ-TiAl)层, TiB2不参与任何反应,且呈层状分布于基体(α2+γ)层中.TiB2-rich层阻碍了(α2+γ)层的全层片组织粗化,并大幅提高了层状TiB2-TiAl复合材料板材的高温拉伸性能.

关键词 TiAl基复合材料板 热处理 层状结构 力学性能    
Abstract

TiAl-based alloy have potential as high temperature structural materials for aerospace applications, especially for thermal protection systems in aerospace vehicles including skin materials. Unfortunately, the ductility and formability of TiAl-based alloys are rather poor and thus γ-TiAl sheets or foils are quite difficult to be manufactured by traditional methods and still far from practical applications. In the present work, commercial pure Ti foils and in-house fabricated TiB2/Al composite foils were alternately stacked and rolled to prepare Ti-(TiB2/Al) laminates, and then heat treatment was utilized to make liquid Al react with solid Ti,and finally TiAl-based composite sheet with multi-layer distributed reinforcement TiB2 particles were achieved. This method avoided the direct deformation of brittle TiAl billets and thus the near-net-shape processing of TiAl-based alloys sheets was feasible. Phase transformation and microstructure evolution during heat treatment were investigated and mechanical properties of the resulting micro-laminated TiB2-TiAl composite sheets were evaluated. The results showed that porous TiAl3 layers were produced by the reaction between liquid Al and solid Ti because of Kirkendall effect, and the following densification treatment under 50 MPa at 1300℃ for 2 h significantly improved the relative density of material. Subsequently, the reaction diffusion between TiAl3 and residual Ti proceeded in the following heat treatment, and finally fully lamellar (α2-Ti3Al+γ-TiAl) layers were obtained. TiB2 particles did not participate in any reaction and remained, and displayed multi-layered distribution in the matrix(α2-Ti3Al+γ-TiAl) layers. TiB2-rich layer hindered the coarsening of lamellar colony of (α2-Ti3Al+γ-TiAl) layer. Tensile properties at 800℃ of multi-layered TiB2-TiAl composite sheets remarkably increased because of an increase of energy dissipation caused by plastic deformation.

收稿日期: 2013-09-04     
基金资助:

国家自然科学基金项目 51071058和51101041, 中国博士后科学基金项目2013M541370和中央高校基本科研业务费专项资金

通讯作者: 崔喜平     E-mail: xiping_0725@163.com
作者简介: 崔喜平, 男, 1980年生, 博士

引用本文:

崔喜平,耿林,范国华,郑镇洙,王桂松. 固液反应法制备增强体层状分布的TiAl基复合材料板[J]. 金属学报, 10.3724/SP.J.1037.2013.00546.
. TiAl-BASED COMPOSITE SHEET WITH MULTI-LAYER DISTRIBUTED REINFORCEMENT PREPARED BY SOLID-LIQUID REACTION. Acta Metall Sin, 2013, 49(11): 1462-1466.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00546      或      https://www.ams.org.cn/CN/Y2013/V49/I11/1462

[1] Zhong H, Yang Y L, Li J S, Wang J, Zhang T B, Li S, Zhang J.  Mater Lett, 2012; 83: 198

[2] Wu X H.  Intermetallics, 2006; 14: 1114
[3] Draper S L, Krause D, Lerch B, Locci I E, Doehnert B, Nigam R, Das G, Rissbacher K.Mater Sci Eng, 2007; A464: 330
[4] Liu R C, Wang Z, Liu D, Bai C G, Cui Y Y, Yang R.  Acta Metall Sin, 2013; 49: 642
(刘仁慈, 王震, 刘冬, 柏春光, 崔玉友, 杨锐.金属学报, 2013; 49: 642)
[5] David E A, Jeffrey A H.  JOM. 1994; 3: 31
[6] Fukutomi H, Ueno M, Nakamura M, Suzuki T, Kikuchi S.  Mater Trans JIM, 1999; 40: 654
[7] Luo J G, Acoff V L.  Mater Sci Eng, 2006; A433: 334
[8] Xu L, Cui Y Y, Hao Y L, Yang R.  Mater Sci Eng, 2006; A435-436: 638
[9] Jakob A, Speidel M O.  Mater Sci Eng, 1994; A189: 134
[10] Chaudhari G P, Acoff V L.  Intermetallics, 2010; 18: 472
[11]Shu S L, Xing B, Qiu F, Jin S B, Jiang Q C.  Mater Sci Eng, 2013; A560: 596
[12] Sun T, Wang Q, Sun D L, Wu G H, Na Y.  Wear, 2010; 268: 693
[13] Chaudhari G P, Acoff V L.  Compos Sci Technol, 2009; 69: 1667
[14] Yang R, Cui Y Y, Dong L M, Jia Q.  J Mater Process Technol, 2003; 135: 185
[15] Bravo P M, Madariaga I, Ostolaza K, Tello M.  Scr Mater, 2005; 53: 1142

[16] Wang J N, Xie K.  Scr Mater, 2000; 43: 442

[1] 王涛,万志鹏,李钊,李佩桓,李鑫旭,韦康,张勇. 热处理工艺对GH4720Li合金细晶铸锭组织与热加工性能的影响[J]. 金属学报, 2020, 56(2): 182-192.
[2] 吴静,刘永长,李冲,伍宇婷,夏兴川,李会军. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56(1): 21-35.
[3] 万响亮, 胡锋, 成林, 黄刚, 张国宏, 吴开明. 两步贝氏体转变对中碳微纳结构钢韧性的影响[J]. 金属学报, 2019, 55(12): 1503-1511.
[4] 逯世杰, 王虎, 戴培元, 邓德安. 蠕变对焊后热处理残余应力预测精度和计算效率的影响[J]. 金属学报, 2019, 55(12): 1581-1592.
[5] 张清东, 林潇, 刘吉阳, 胡树山. Q&P钢热处理过程有限元法数值模拟模型研究[J]. 金属学报, 2019, 55(12): 1569-1580.
[6] 何波, 邢盟, 杨光, 邢飞, 刘祥宇. 成分梯度对激光沉积制造TC4/TC11连接界面组织和性能的影响[J]. 金属学报, 2019, 55(10): 1251-1259.
[7] 田甜, 郝志博, 贾崇林, 葛昌纯. 新型第三代粉末高温合金FGH100L的显微组织与力学性能[J]. 金属学报, 2019, 55(10): 1260-1272.
[8] 丘玉萍, 戴豪, 戴洪斌, 王平. 适于水合肼分解制氢的Ni-Pt/CeO2催化剂的表面组分调控[J]. 金属学报, 2018, 54(9): 1289-1296.
[9] 丁浩, 崔喜平, 许长寿, 李爱滨, 耿林, 范国华, 陈俊锋, 孟松鹤. 连续玄武岩纤维增强铝基层状复合材料的制备与力学特性[J]. 金属学报, 2018, 54(8): 1171-1178.
[10] 陈光, 郑功, 祁志祥, 张锦鹏, 李沛, 成家林, 张中武. 受控凝固及其应用研究进展[J]. 金属学报, 2018, 54(5): 669-681.
[11] 朱恺, 伍翠兰, 谢盼, 韩梅, 刘元瑞, 张香阁, 陈江华. 奥氏体/铁素体层状条带结构高锰钢的微观组织及其性能[J]. 金属学报, 2018, 54(10): 1387-1398.
[12] 李天瑞, 刘国怀, 徐莽, 牛红志, 付天亮, 王昭东, 王国栋. Ti-43Al-4Nb-1.5Mo合金包套锻造与热处理过程的微观组织及高温拉伸性能[J]. 金属学报, 2017, 53(9): 1055-1064.
[13] 张文奇, 朱海红, 胡志恒, 曾晓雁. AlSi10Mg的激光选区熔化成形研究[J]. 金属学报, 2017, 53(8): 918-926.
[14] 黄龙,邓想涛,刘佳,王昭东. 0.12C-3.0Mn低碳中锰钢中残余奥氏体稳定性与低温韧性的关系[J]. 金属学报, 2017, 53(3): 316-324.
[15] 刘洪喜,李正学,张晓伟,谭军,蒋业华. 热处理对钛合金表面激光原位合成高铌Ti-Al金属间化合物涂层高温抗氧化行为的影响[J]. 金属学报, 2017, 53(2): 201-210.