Please wait a minute...
金属学报  2014, Vol. 50 Issue (5): 547-554    DOI: 10.3724/SP.J.1037.2013.00458
  论文 本期目录 | 过刊浏览 |
Cu对TA15-2钛合金表面Stellite 12基激光合金化涂层组织结构及耐磨性的影响*
李嘉宁1,2), 巩水利1), 王娟3), 单飞虎1), 李怀学1), 吴冰1)
1) 北京航空制造工程研究所高能束流加工技术重点实验室, 北京 100024
2) 北京航空材料研究院, 北京 100095
3) 山东大学材料科学与工程学院, 济南 250061
INFLUENCE OF Cu ON MICROSTRUCTURES AND WEAR RESISTANCE OF STELLITE 12 MATRIX LASER ALLOYING COATINGS ON TA15-2 TITANIUM ALLOY
LI Jianing 1, 2), GONG Shuili 1), WANG Juan 3), SHAN Feihu 1), LI Huaixue 1), WU Bing 1)
1) Science and Technology on Power Beam Processes Laboratory, Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024
2) Beijing Institute of Aeronautical Materials, Beijing 100095
3) School of Materials Science and Engineering, Shandong University, Jinan 250061
全文: PDF(10728 KB)   HTML
摘要: 

在TA15-2表面进行激光同轴送粉合金化Stellite 12-B4C粉末制备耐磨复合涂层. 研究表明, 加入Cu可促使大量超细纳米多晶体及非晶相在涂层中产生, 从而增强涂层的耐磨性. Cu对激光合金化涂层的纳米化过程, 是利用Cu在激光熔池中原位化学反应生成的AlCu2Ti超细纳米晶相来抑制颗粒长大的过程, 也是大量纳米多晶体生成的过程. 含Cu涂层主要由g-Co, M12C, M23C6, W-C, Ti-B及AlCu2Ti晶化相、大量非晶相构成. AlCu2Ti超细纳米晶在高温熔池中具有较高的扩散率, 易引发晶格畸变, 使涂层发生非晶化转变.

关键词 激光合金化表面强化磨损性能非晶纳米晶    
Abstract:Coaxial powder feeding laser alloying of the Stellite 12-B4C mixed powders on an aviation material TA15-2 titanium alloy substrate can form a wear resistance composite coating. Investigation indicated that the Cu addition promoted a great quantity of the ultrafine nanoscale polycrystals and amorphous phases to be produced in such coating, leading to an improvement of wear resistance. The nanocrystallization process of Cu on laser clad coatings, i.e. and the process of the productions of the nanoscale polycrystals, and also the AlCu2Ti ultrafine nanocrystals which were produced through in situ chemical reaction in laser molten pool retarded greatly growth of the particles. The coating with Cu mainly consisted of g-Co, M12C, M23C6, W-C, Ti-B, AlCu2Ti and also the amorphous phases. AlCu2Ti ultrafine nanocrystals owned the high diffusibility in such high temperature molten pool, causing the lattice distortions, which also played an important amorphization effect on such coating.
Key wordslaser alloying    surface reinforcement    wear property    amorphous    nanocrystal
收稿日期: 2013-07-29     
ZTFLH:  TG132  
基金资助:*国家自然科学基金项目51175035及中国博士后科学基金项目2012M520135资助
Corresponding author: GONG Shuili, professor, Tel: (010)85701564, E-mail: gongshuili@sina.com   
作者简介: 李嘉宁, 男, 1982年生, 博士

引用本文:

李嘉宁, 巩水利, 王娟, 单飞虎, 李怀学, 吴冰. Cu对TA15-2钛合金表面Stellite 12基激光合金化涂层组织结构及耐磨性的影响*[J]. 金属学报, 2014, 50(5): 547-554.
LI Jianing, GONG Shuili, WANG Juan, SHAN Feihu, LI Huaixue, WU Bing. INFLUENCE OF Cu ON MICROSTRUCTURES AND WEAR RESISTANCE OF STELLITE 12 MATRIX LASER ALLOYING COATINGS ON TA15-2 TITANIUM ALLOY. Acta Metall Sin, 2014, 50(5): 547-554.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00458      或      https://www.ams.org.cn/CN/Y2014/V50/I5/547

[1] Mao X N, Zhao Y Q, Yang G J. Rare Met Lett, 2007; 26(5): 1
(毛小南, 赵永庆, 杨冠军. 稀有金属快报, 2007; 26(5): 1)
[2] Li J N, Gong S L, Liu H, Li H X. Mater Lett, 2013; 92: 235
[3] Yue T M, Su Y P. Appl Surf Sci, 2008; 255: 1692
[4] Gu D D, Meng G B, Li C, Meiners W, Poprawe R. Scr Mater, 2012; 67: 185
[5] Li J N, Gong S L. Physica, 2013; 47E: 193
[6] Zhang S, Zhang C H. Acta Metall Sin, 2002; 38: 1100
(张 松, 张春华. 金属学报, 2002; 38: 1100)
[7] Wu X L, Hong Y S. Surf Coat Technol, 2001; 141: 141
[8] Zhu Y Y, Li Z G, Li R F, Li M, Daze X L, Feng K, Wu Y X. Appl Surf Sci, 2013; 280: 50
[9] Yarrapareddy E, Kovacevic R. Surf Coat Technol, 2008; 202: 1951
[10] Adraider Y, Pang Y X, Nabhani F, Hodgson S N, Zhang Z Y. Surf Coat Technol, 2011; 205: 5345
[11] Li Y Z, Wang C S, Li T, Yao B. Chin J Lasers, 2010; 37: 1356
(李耀忠, 王存山, 李 婷, 姚 标. 中国激光, 2010; 37: 1356)
[12] Wang H Y. Trans Nonferrous Met Soc China, 2011; 21: 1322
[13] Sebastiani M, Mangione V, De Felicis D, Bemporad E, Carassiti F. Wear, 2012; 290-291(30): 10
[14] Radu I, Li D Y. Wear, 2005; 259: 453
[15] Li J N, Gong S L, Yu H J, Chen C Z. J Phys Chem, 2013; 117C: 4568
[16] Dai Q X. Metal Material Science. Beijing: Chemical Industry Press, 2005: 36
(戴起勋. 金属材料学. 北京: 化学工业出版社, 2005: 36)
[17] Guo B G, Zhou J S, Zhang S T, Zhou H D, Pu Y P, Chen J M. Appl Surf Sci, 2007; 253: 9301
[18] Shi S H, Fu G Y. Heat Treatment Met, 1999; (3): 14
(石世宏, 傅戈雁. 金属热处理, 1999; (3): 14)
[19] Li J N, Chen C Z, Zhang C F. Mater Res Innovat, 2011; 15: 344
[20] Zhang B W. Physical Fundamentals of Nanomaterials. Beijing: Chemical Industry Press, 2009: 110
(张邦维. 纳米材料物理基础. 北京: 化学工业出版社, 2009: 110)
[21] Wang J F, Fan X H, Zhang C J. Solid State Physics. Jinan: Shandong University Press, 2003: 163
(王矜奉, 范希会, 张承琚. 固体物理. 济南: 山东大学出版社, 2003: 163)
[22] Wang H Y, Zuo D W, Wang M D, Shao J B. Acta Metall Sin, 2009; 45: 971
(王宏宇, 左敦稳, 王明娣, 邵建兵. 金属学报, 2009; 45: 971)
[1] 黄火根, 张鹏国, 张培, 王勤国. U-CoU-Fe基础体系非晶形成能力的比较[J]. 金属学报, 2020, 56(6): 849-854.
[2] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[3] 孙新军,刘罗锦,梁小凯,许帅,雍岐龙. 高钛耐磨钢中TiC析出行为及其对耐磨粒磨损性能的影响[J]. 金属学报, 2020, 56(4): 661-672.
[4] 金辰日, 杨素媛, 邓学元, 王扬卫, 程兴旺. 纳米晶化对锆基非晶合金动态压缩性能的影响[J]. 金属学报, 2019, 55(12): 1561-1568.
[5] 杨高林, 林鑫, 卢献钢. 激光多次熔凝Zr55Cu30Al10Ni5非晶合金的晶化形态与演化机理[J]. 金属学报, 2019, 55(12): 1544-1550.
[6] 梁秀兵, 范建文, 张志彬, 陈永雄. 铝基非晶纳米晶复合涂层显微组织与腐蚀性能研究[J]. 金属学报, 2018, 54(8): 1193-1203.
[7] 刘峰, 黄林科, 陈豫增. 纳米晶金属材料中相变与晶粒长大的共生现象[J]. 金属学报, 2018, 54(11): 1525-1536.
[8] 张媛媛,林鑫,魏雷,任永明. 激光立体成形退火态Zr55Cu30Al10Ni5粉末的晶化行为[J]. 金属学报, 2017, 53(7): 824-832.
[9] 耿遥祥,林鑫,羌建兵,王英敏,董闯. Finemet型纳米晶软磁合金的双团簇特征与成分优化[J]. 金属学报, 2017, 53(7): 833-841.
[10] 徐宏扬,柯海波,黄火根,张培,张鹏国,刘天伟. U65Fe30Al5非晶合金的纳米压痕蠕变行为研究[J]. 金属学报, 2017, 53(7): 817-823.
[11] 马殿国,王英敏,李艳辉,张伟. Co含量对熔体快淬Fe55-xCoxPt15B30合金的组织结构与磁性能的影响[J]. 金属学报, 2017, 53(5): 609-614.
[12] 郑玉峰,吴远浩. 处在变革中的医用金属材料[J]. 金属学报, 2017, 53(3): 257-297.
[13] 耿遥祥,张志杰,王英敏,羌建兵,董闯,汪海斌,特古斯. 高Fe含量Fe-B-Si-Hf块体非晶合金的结构-性能关联[J]. 金属学报, 2017, 53(3): 369-375.
[14] 黄火根,徐宏扬,张鹏国,王英敏,柯海波,张培,刘天伟. 具有反常非晶形成能力的U-Cr二元合金[J]. 金属学报, 2017, 53(2): 233-238.
[15] 彭超, 李媛, 邓永和, 彭平. 近共晶成分Ni-P非晶合金微结构特征的原子模拟分析[J]. 金属学报, 2017, 53(12): 1659-1668.