Please wait a minute...
金属学报  2021, Vol. 57 Issue (4): 542-552    DOI: 10.11900/0412.1961.2020.00420
  研究论文 本期目录 | 过刊浏览 |
具有异常放热现象的Fe-Nb-B-Y非晶合金燃烧机理
胡祥1, 葛嘉城1, 刘思楠1, 伏澍1, 吴桢舵2,3, 冯涛1, 刘冬4, 王循理2, 兰司1()
1.南京理工大学 材料科学与工程学院/格莱特研究院 格莱特纳米科技研究所 南京 210094
2.香港城市大学 物理系 香港 999077
3.东莞市香港城市大学研究院 中子散射应用物理研究中心 东莞 523808
4.南京理工大学 能源与动力工程学院 南京 210094
Combustion Mechanism of Fe-Nb-B-Y Amorphous Alloys with an Anomalous Exothermic Phenomenon
HU Xiang1, GE Jiacheng1, LIU Sinan1, FU Shu1, WU Zhenduo2,3, FENG Tao1, LIU Dong4, WANG Xunli2, LAN Si1()
1.Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering/Herbert Gleiter Institute, Nanjing University of Science and Technology, Nanjing 210094, China
2.Department of Physics, City University of Hong Kong, Hong Kong 999077, China
3.Applied Physics Centre of Neutron Scattering, Dongguan University of Hong Kong Research Institute, Dongguan 523808, China
4.School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
引用本文:

胡祥, 葛嘉城, 刘思楠, 伏澍, 吴桢舵, 冯涛, 刘冬, 王循理, 兰司. 具有异常放热现象的Fe-Nb-B-Y非晶合金燃烧机理[J]. 金属学报, 2021, 57(4): 542-552.
Xiang HU, Jiacheng GE, Sinan LIU, Shu FU, Zhenduo WU, Tao FENG, Dong LIU, Xunli WANG, Si LAN. Combustion Mechanism of Fe-Nb-B-Y Amorphous Alloys with an Anomalous Exothermic Phenomenon[J]. Acta Metall Sin, 2021, 57(4): 542-552.

全文: PDF(3567 KB)   HTML
摘要: 

通过同步辐射原位高能X射线衍射,结合差式扫描量热、热重分析、X射线光电子能谱等检测手段,对具有异常放热现象的铁基非晶合金条带的燃烧机理进行了系统研究。结果表明,相比不具有异常放热现象、无法自蔓延燃烧的Fe-Nb-B-Y非晶合金成分,具有异常放热现象的(Fe0.72B0.24Nb0.04)95.5Y4.5非晶条带由于快速晶化放热过程的催化,能够实现低着火点及自蔓延燃烧。与液-液相变相关联的异常放热现象诱导了升温过程中的快速晶化,并导致高温下的多步氧化反应。同时液-液相变导致高温氧化阶段的激活能降低,从而降低反应能垒,促进高温下的氧化反应。研究表明异常放热现象及其关联的液-液相变对铁基非晶合金的燃烧有“诱导活化”作用。

关键词 非晶合金液-液相变燃烧含能材料    
Abstract

The functional groups in traditional energetic materials typically contain C, N, and O. These elements are usually unstable and sensitive to external stimuli. Moreover, the chemicals used during the preparation process of traditional energetic materials are toxic and pose many safety and environmental issues. As one of the metastable materials, high-energy-state amorphous alloys are potential candidates for new energetic materials with high combustion heat, low ignition temperature, non-toxicity, and improved safety. In this work, the combustion mechanism of Fe-based amorphous ribbons with an anomalous exothermic phenomenon was systematically studied using in situ synchrotron X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, and X-ray photoelectron spectroscopy. Experimental results show that compared to Fe-Nb-B-Y amorphous alloys with normal thermophysical and combustion behaviors, (Fe0.72B0.24Nb0.04)95.5Y4.5 amorphous ribbons with anomalous exothermic phenomena possess low ignition temperature and self-propagating combustion behavior due to the catalysis of the rapid crystallization exothermic process. The anomalous exothermic phenomenon and associated liquid-liquid phase transitions can cause rapid crystallization at elevated temperatures during heating, followed by multi-step oxidation. On the other hand, it was possible to significantly reduce the activation energy of high-temperature oxidation. The liquid-liquid phase transition can lower the energy barrier of the oxidation reaction. In this way, the oxidation reaction at high temperatures can be promoted. The results suggest that the liquid-liquid phase transition has an “induced activation” effect on the combustion of Fe-based amorphous alloys.

Key wordsamorphous alloy    liquid-liquid phase transition    combustion    energetic material
收稿日期: 2020-10-26     
ZTFLH:  TG146.4  
基金资助:国家自然科学基金项目(51871120);江苏省自然科学基金-杰出青年基金项目(BK20200019)
作者简介: 胡祥,男,1996年生,硕士生
图1  Fe-Nb-B-Y非晶合金在空气中的点火和燃烧过程光学摄像记录照片(a) 0 s (b) 1 s (c) 2 s (d) 3 s (e) 4 s (f) 5 s
图2  Fe-Nb-B-Y非晶合金的热分析结果(a) DSC curves of Fe-Nb-B-Y MGs showing Y4.5 MGs have an anomalous exothermic phenomenon (AEP) in the supercooled liquid region, while Y0, Y3, and Y7 MGs do not have (Inset shows the enlarged region of AEP for Y4.5. T—absolute temperature, Tg—glass transition temperature, TC—valley temperature of the AEP, TX—crystallization temperature, Tm—melting temperature, Tl—liquidus temperature)(b) ignition temperature (Ti) of Y0, Y3, and Y4.5 MGs calculated by the TG-DTG tangent method(c) DTG curves of Fe-Nb-B-Y MGs(d) calculation of the activation energy of Fe-Nb-B-Y MGs during oxidation (Ea—activation energy, R—gas constant, dW /dt—mass change rate, w—residule mass during oxidation)
CompositionTgTCTXTiTmTl
Fe72B24Nb4829-850101414291455
(Fe0.72B0.24Nb0.04)97Y3847-910, 99890913761428
(Fe0.72B0.24Nb0.04)95.5Y4.5857905950, 99895313791429
表1  Fe-Nb-B-Y非晶合金的热物理参数 (K)
CompositionELTOEMTOEHTO
Fe72B24Nb4171100152
(Fe0.72B0.24Nb0.04)97Y318814070
(Fe0.72B0.24Nb0.04)95.5Y4.516415847
表2  Fe-Nb-B-Y非晶合金不同氧化阶段的激活能 (kJ·mol-1)
图3  Y4.5块体非晶合金在同步辐射原位加热实验中出现的自放热现象(a) heating process (b) heating rate
图4  Y4.5样品不同温度下以0.33 K/s的升温速率加热时有自放热过程、无自放热过程和以1.67 K/s的升温速率快速加热过程的结构因子S(Q)和约化对分布函数G(r)(a, d) plots for the sample with a self-heating process with heating rate 0.33 K/s (b, e) plots for the sample without self-heating during a normal slow heating process with heating rate 0.33 K/s (c, f) plots for the sample with a fast-heating rate (1.67 K/s)
图5  Y4.5非晶合金在惰性气体保护气氛下慢速加热无自放热过程、快速加热有自放热过程和在空气中燃烧后产物的HE-XRD结构精修结果以及Y4.5燃烧产物的OM像
图6  Y0、Y3和Y7燃烧产物的HE-XRD结构精修结果
图7  Y0、Y3、Y4.5和Y7燃烧产物的XPS结果
图8  潮湿环境下传统专业棉线包裹火药引火线和Y4.5非晶合金条带的燃烧现象光学摄像记录照片(a) 0 s (b) 1 s (c) 2 s (d) 3 s (e) 4 s (f) 5 s
图9  Fe-Nb-B-Y非晶合金在空气中燃烧过程示意图
1 Baletto F, Ferrando R. Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects [J]. Rev. Mod. Phys., 2005, 77: 371
2 Sikder A K, Sikder N. A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications [J]. J. Hazard. Mater., 2004, 112: 1
3 Li G, Zhang C Y. Review of the molecular and crystal correlations on sensitivities of energetic materials [J]. J. Hazard. Mater., 2020, 398: 122910
4 Yu B S, Sun Y H, Bai H Y, et al. Highly energetic and flammable metallic glasses [J]. Sci. China Phys. Mech. Astron., 2020, 63: 276112
5 Badgujar D M, Talawar M B, Asthana S N, et al. Advances in science and technology of modern energetic materials: An overview [J]. J. Hazard. Mater., 2008, 151: 289
6 Trunov M A, Schoenitz M, Dreizin E L. Ignition of aluminum powders under different experimental conditions [J]. Propell. Explos. Pyrot., 2005, 30: 36
7 Yagodnikov D A, Ignatov A V, Gusachenko E I. Ignition and combustion of pyrotechnic compositions based on microsized and ultra-nanosized aluminum particles in a moist medium in a two-zone gas generator [J]. Combust. Explos. Shock Waves, 2017, 53: 15
8 Pan J, Wang Y X, Guo Q, et al. Extreme rejuvenation and softening in a bulk metallic glass [J]. Nat. Commun., 2018, 9: 560
9 Dreizin E L. Phase changes in metal combustion [J]. Prog. Energy Combust. Sci., 2000, 26: 57
10 Ge J C, He H Y, Zhou J, et al. In-situ scattering study of a liquid-liquid phase transition in Fe-B-Nb-Y supercooled liquids and its correlation with glass-forming ability [J]. J. Alloys Compd., 2019, 787: 831
11 Lan S, Ren Y, Wei X Y, et al. Hidden amorphous phase and reentrant supercooled liquid in Pd-Ni-P metallic glasses [J]. Nat. Commun., 2017, 8: 14679
12 Tanaka H. General view of a liquid-liquid phase transition [J]. Phys. Rev., 2000, 62E: 6968
13 Palmer J C, Martelli F, Liu Y, et al. Metastable liquid-liquid transition in a molecular model of water [J]. Nature, 2014, 510: 385
14 Shimizu R, Kobayashi M, Tanaka H. Evidence of liquid-liquid transition in triphenyl phosphite from time-resolved light scattering experiments [J]. Phys. Rev. Lett., 2014, 112: 125702
15 Zhou Z J, Hu X, You Z, et al. Oxy-fuel combustion characteristics and kinetic parameters of lignite coal from thermo-gravimetric data [J]. Thermochim. Acta, 2013, 553: 54
16 Fakhraai Z, Forrest J A. Measuring the surface dynamics of glassy polymers [J]. Science, 2008, 319: 600
17 Kök M V, Acar C. Kinetics of crude oil combustion [J]. J. Therm. Anal. Calorim., 2006, 83: 445
18 Lysenko E N, Surzhikov A P, Zhuravkov S P, et al. The oxidation kinetics study of ultrafine iron powders by thermogravimetric analysis [J]. J. Therm. Anal. Calorim., 2014, 115: 1447
19 Qi X W, Zhou J, Yue Z X, et al. Auto-combustion synthesis of nanocrystalline LaFeO3 [J]. Mater. Chem. Phys., 2003, 78: 25
20 Takacs L. Self-sustaining reactions induced by ball milling: An overview [J]. Int. J. Self-Propag. High-Temp. Synth., 2009, 18: 276
21 Takahashi M, Koshimura M, Abuzuka T. Phase diagram of amorphous and crystallized Fe-B alloy system [J]. Jpn. J. Appl. Phys., 1981, 20: 1821
22 Abrosimova G E, Aronin A S. Formation of metastable phases during crystallization of amorphous iron-based alloys [J]. Crystallogr. Rep., 2020, 65: 573
23 Grosvenor A P, Kobe B A, Biesinger M C, et al. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds [J]. Surf. Interface Anal., 2004, 36: 1564
24 Yamashita T, Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials [J]. Appl. Surf. Sci., 2008, 254: 2441
25 Kim K J, Moon D W, Lee S K, et al. Formation of a highly oriented FeO thin film by phase transition of Fe3O4 and Fe nanocrystallines [J]. Thin Solid Films, 2000, 360: 118
26 Li Y X, Claydon J S, Ahmad E, et al. XPS and XMCD study of Fe3O4 GaAs interface [J]. IEEE Trans. Magn., 2005, 41: 2808
27 Rydén M, Leion H, Mattisson T, et al. Combined oxides as oxygen-carrier material for chemical-looping with oxygen uncoupling [J]. Appl. Energy, 2014, 113: 1924
28 Zhang C, Wu Y, Liu L. Robust hydrophobic Fe-based amorphous coating by thermal spraying [J]. Appl. Phys. Lett., 2012, 101: 121603
29 Filonenko N Y, Babachenko O I, Kononenko G A. Influence of overheating and cooling rate on the structures and properties of alloys of the Fe-B system [J]. Mater. Sci., 2019, 55: 440
30 Otero T F, Santos F. Polythiophene oxidation: Rate coefficients, activation energy and conformational energies [J]. Electrochim. Acta, 2008, 53: 3166
31 Zhong Z Y, Highfield J, Lin M, et al. Insights into the oxidation and decomposition of CO on Au/α-Fe2O3 and on α-Fe2O3 by coupled TG-FTIR [J]. Langmuir, 2008, 24: 8576
32 Cao C R, Lu Y M, Bai H Y, et al. High surface mobility and fast surface enhanced crystallization of metallic glass [J]. Appl. Phys. Lett., 2015, 107: 141606
[1] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[2] 曹姝婷, 张少华, 张健. GH4061合金在高压富氧环境下的燃烧行为[J]. 金属学报, 2023, 59(4): 547-555.
[3] 刘帅帅, 侯超楠, 王恩刚, 贾鹏. Zr61Cu25Al12Ti2Zr52.5Cu17.9Ni14.6Al10Ti5 块体非晶合金过冷液相区的塑性流变行为[J]. 金属学报, 2022, 58(6): 807-815.
[4] 李金富, 李伟. 铝基非晶合金的结构与非晶形成能力[J]. 金属学报, 2022, 58(4): 457-472.
[5] 张金勇, 赵聪聪, 吴宜谨, 陈长玖, 陈正, 沈宝龙. (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x 高熵非晶合金薄带的结构特征及其晶化行为[J]. 金属学报, 2022, 58(2): 215-224.
[6] 韩录会, 柯海波, 张培, 桑革, 黄火根. 非晶态U60Fe27.5Al12.5 合金的晶化动力学行为[J]. 金属学报, 2022, 58(10): 1316-1324.
[7] 李宁, 黄信. 块体非晶合金的3D打印成形研究进展[J]. 金属学报, 2021, 57(4): 529-541.
[8] 毕甲紫, 刘晓斌, 李然, 张涛. 非晶合金粉末作为润滑油添加剂的摩擦学性能[J]. 金属学报, 2021, 57(4): 559-566.
[9] 潘杰, 段峰辉. 非晶合金的回春行为[J]. 金属学报, 2021, 57(4): 439-452.
[10] 刘日平, 马明臻, 张新宇. 块体非晶合金铸造成形的研究新进展[J]. 金属学报, 2021, 57(4): 515-528.
[11] 朱敏, 欧阳柳章. 镁基储氢合金动力学调控及电化学性能[J]. 金属学报, 2021, 57(11): 1416-1428.
[12] 黄火根, 张鹏国, 张培, 王勤国. U-CoU-Fe基础体系非晶形成能力的比较[J]. 金属学报, 2020, 56(6): 849-854.
[13] 耿遥祥, 王英敏. 铁基非晶合金局域结构与性能关联:基于微合金化机理研究[J]. 金属学报, 2020, 56(11): 1558-1568.
[14] 徐秀月, 李艳辉, 张伟. Fe(Pt, Ru)B非晶带材脱合金制备纳米多孔PtRuFe及其甲醇电催化性能[J]. 金属学报, 2020, 56(10): 1393-1400.
[15] 杨高林, 林鑫, 卢献钢. 激光多次熔凝Zr55Cu30Al10Ni5非晶合金的晶化形态与演化机理[J]. 金属学报, 2019, 55(12): 1544-1550.