Please wait a minute...
金属学报  2021, Vol. 57 Issue (4): 515-528    DOI: 10.11900/0412.1961.2020.00414
  综述 本期目录 | 过刊浏览 |
块体非晶合金铸造成形的研究新进展
刘日平(), 马明臻(), 张新宇
燕山大学 亚稳材料制备技术与科学国家重点实验室 秦皇岛 066004
New Development of Research on Casting of Bulk Amorphous Alloys
LIU Riping(), MA Mingzhen(), ZHANG Xinyu
State Key Laboratory of Metastable Materials Preparation Technology and Science, Yanshan University, Qinhuangdao 066004, China
引用本文:

刘日平, 马明臻, 张新宇. 块体非晶合金铸造成形的研究新进展[J]. 金属学报, 2021, 57(4): 515-528.
Riping LIU, Mingzhen MA, Xinyu ZHANG. New Development of Research on Casting of Bulk Amorphous Alloys[J]. Acta Metall Sin, 2021, 57(4): 515-528.

全文: PDF(3422 KB)   HTML
摘要: 

块体非晶合金的亚稳态结构特点,决定了其难于用常规的锻压或焊接等工艺手段进行构件或零件的加工制造,但利用块体非晶合金熔体的流动性进行铸造成形,是制造块体非晶合金构件或零件的有效技术手段。本文基于块体非晶合金的铸造成形,简要介绍了块体非晶合金熔体的流动性与充型能力,真空压铸、真空吸铸、以及水冷铜坩埚重力铸造与相变制冷铸造成形的技术方法与应用,探讨了非晶合金铸造成形过程需要解决的理论问题和需要攻克的技术瓶颈,展望了块体非晶合金的工程应用前景。

关键词 块体非晶合金流动性铸造成形真空压铸真空吸铸    
Abstract

Bulk amorphous alloys possess a metastable structure, which is difficult to process and manufacture into components or parts by conventional forging or welding. Instead, components or parts from bulk amorphous alloys can be fabricated by vacuum casting with the fluidity of bulk amorphous-alloy melts. Based on the casting forming of bulk amorphous alloys, this paper briefly introduces the fluidity and filling ability of bulk amorphous-alloy melts. In addition, the technical methods and applications of vacuum die casting, vacuum suction casting, gravity casting in a water-cooled copper crucible, and phase-change refrigeration casting are also mentioned. The theoretical problems and technical bottlenecks to be resolved in the forming process of bulk amorphous alloys are then discussed. Finally, the engineering application prospects of bulk amorphous alloys are suggested.

Key wordsbulk amorphous alloy    fluidity    casting forming    vacuum die casting    vacuum suction casting
收稿日期: 2020-10-20     
ZTFLH:  TG139  
基金资助:国家自然科学基金项目(52071278);国家重点研发计划项目(2018YFA0703603)
图1  流动性测试装置示意图和水冷模具的照片[38]
图2  不同直径、不同温度和压力差对流动长度的影响及不同条件时纵截面剖面图[38]
Temperature / KΔp / MPa
0.0200.0250.0300.035
1073
1123
1173
1223
1273
表1  直径6 mm流动性测试纵截面缺陷存在数量[38]
图3  高压铸造装置示意图、模具的三维模型及由耐热钢和铜合金制成的铸造模具[40]
图4  在1353 K下铸造的钥匙的SEM像[40](a) taken at the core of the key, showing a completely crystalline region(b) taken between the core and the outer surface, revealing the interface between the glassy and crystalline parts(c) taken close to the outer surface, showing a completely glassy part of the key
图5  EPV-HPDC设备和操作模式说明[41](a) loading materials and melting(b) pouring liquid metal into the shot sleeve and filling die (V—speed)(c) solidifying under pressure (p—pressure)
图6  Zr55Cu30Ni5Al10块体非晶合金(BMG)智能手机框架和相应的浇注系统图像,及其孔隙率的3D分布[41]
图7  形状各异、用于不同领域的BMG部件[41](a) BMG transmission used in a notebook computer fabricated by Vit106(b) thin-walled and hollow BMG earphones (Vit106)(c) Vit106 thin-walled BMG samples coated in different colors (d-f) biomedical implants fabricated using Vit105 BMGs
图8  块体非晶合金柔轮的制作过程,及DSC曲线和XRD谱[46](a) suction casting over brass inserts was used to create a cup from a Ti-based BMG(b) comparing the outer shape of the BMG cup to a machined steel flexspline(c) the minimum thickness of the cup using suction pressure was 2 mm. The wall was thinned via conventional machining(d) electrial discharge machining (EDM) was used to machine the teeth in the flexspline resulting in the final shape(e) attempts were made to cast the teeth of the flexspline using and EDMed mold (inset)(f) comparison of fully prototyped BMG flexspline with a steel version(g) an assembled, functioning strain wave gear (SWG) utilizing a BMG flexspline from Fig.8f(h) DSC traces of three BMG alloys cast into flexsplines. The lower two plots were prototyped using lab-grade material while the other plot is from a commercially cast part(i) XRD spectra of three BMG alloys cast into flexsplines, showing mostly amorphous microstructure even in fairly large parts
图9  商业化生产铸造的BMG柔轮[46](a, b) 50 mm and 20 mm diameter BMG flexsplines cast to near net shape from the alloy LM1b. After casting, the samples have been de-gated and holes machined into the bottom (c, d) inserting the BMG flexspline into a commercial steel outer spline (e) a fully assembled hybrid CSG-20 SWG with a BMG flexspline (f) a still from a video of the BMG flexspline being driven by the wave generator after submersion in liquid nitrogen (g, h) testing a fully assembled SWG with a BMG flexspline at liquid nitrogen temperatures (i) example of different BMG alloys cast into flexsplines. In total, four alloys were fabricated commercially, as shown (j) optimal micrographs from the larger 50 mm diameter flexspline comparing the steel part to the cast BMG part (k) images of 20 mm diameter flexsplines from machined steel, machined BMG and two cast BMG (l) a schematic showing approximate cost associated with machining steel flexsplines and casting > 1.0 × 104 BMG flexsplines. BMGs can be cast down to ~20 mm in diameter before thermoplastic forming techniques must be used to achieve micro-sized flexsplines. Multi-part casting is possible at small flexspline dimensions
图10  水冷铜坩埚熔炼与金属铜模具铸造的锆基块体非晶合金铸件(a) angle casting (b) Olympic icon casting
Casting moldingCast amorphous alloyAdvantageDisadvantage
technologycasting
Vacuum die castingThin-walled castings such asNear net shape casting, fastLimited casting thickness
phone shells, watch shells,speed, high efficiency(0.5-2.0 mm), low process
notebook computeryield, and there are tiny
accessories, etc.pores
Vacuum suction castingSimple cylinder, disk, ring,Stable filling, controllableNot suitable for casting of
or plate-like castingflow state of alloy meltcomplex shaped castings
Water-cooled copperSuitable for casting moldingAmorphous alloy melt does notThe low overheat of the alloy
crucible meltingof various shapes and sizesreact with the crucible, the alloymelt affects the filling ability
copper mold castingcastingsmelt is clean, and it does notand is prone to produce defects
affect the amorphous formingof insufficient pouring
ability
Ceramic or graphiteSuitable for casting moldingAlloy melt with a largeThe alloy melt reacts with the
crucible melting copperof various shapes and sizescontrollable range of overheat,crucible to reduce the amorphous
mold castingcastingsgood filling ability, easy toforming ability, and it is only
obtain complete castingssuitable for alloy systems with
strong forming ability
Phase transformationSuitable for casting moldingControllable cooling rateAdditional cooling medium is
refrigeration castingof various shapes and sizesrequired and is difficult to
castingsoperate
表2  不同铸造成形技术的适用性及优缺点
1 Wang W H, Luo P. The dynamic behavior hidden in the long time scale of metallic glasses and its effect on the properties [J]. Acta Metall. Sin., 2018, 54: 1479
1 汪卫华, 罗 鹏. 金属玻璃中隐藏在长时间尺度下的动力学行为及其对性能的影响 [J]. 金属学报, 2018, 54: 1479
2 Inoue A, Takeuchi A. Recent development and application products of bulk glassy alloys [J]. Acta Mater., 2011, 59: 2243
3 Tian H F, Qiao J W, Yang H J, et al. The corrosion behavior of in-situ Zr-based metallic glass matrix composites in different corrosive media [J]. Appl. Surf. Sci., 2016, 363: 37
4 Li B, Sun W C, Qi H N, et al. Effects of Ag substitution for Fe on glass-forming ability, crystallization kinetics, and mechanical properties of Ni-free Zr-Cu-Al-Fe bulk metallic glasses [J]. J. Alloys Compd., 2020, 827: 154385
5 Jin Z S, Yang Y J, Zhang Z P, et al. Effect of Hf substitution Cu on glass-forming ability, mechanical properties and corrosion resistance of Ni-free Zr-Ti-Cu-Al bulk metallic glasses [J]. J. Alloys Compd., 2019, 806: 668
6 Kramer J. Noconducting modification of metals [J]. Annln Phys., 1934, 19: 37
7 Brenner A, Couch D E, Williams E K. Electrodeposition of alloys of phosphorus with nickel or cobalt [J]. J. Res. Natl. Bur. Srtand., 1950, 44: 109
8 Buckel W, Hilsch R. Einfluß der kondensation bei tiefen temperaturen auf den elektrischen widerstand und die supraleitung für verschiedene metalle [J]. Z. Phys., 1954, 138: 109
9 Turnbull D, Cohen M H. Concerning reconstructive transformation and formation of glass [J]. J. Chem. Phys., 1958, 29: 1049
10 Chen H S, Turnbull D. Evidence of a glass-liquid transition in a gold-germanium-silicon alloy [J]. J. Chem. Phys., 1968, 48: 2560
11 Klement W K, Willens P H, Duwez P. Non-crystalline structure in solidified gold-silicon alloys [J]. Nature, 1960, 187: 869
12 Inoue A, Kohinata M, Tasi A P, et al. Mg-Ni-La amorphous alloys with a wide supercooled liquid region [J]. Mater Trans. JIM, 1989, 30: 378
13 Inoue A, Zhang T, Masumoto T. Al-La-Ni amorphous alloys with a wide supercooled liquid region [J]. Mater. Trans. JIM, 1989, 30: 965
14 Peker A, Johnson W L. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.8 [J]. Appl. Phys. Lett., 1993, 63: 2342
15 Mukherjee S, Schroers J, Zhou Z, et al. Viscosity and specific volume of bulk metallic glass-forming alloys and their correlation with glass forming ability [J]. Acta Mater., 2004, 52: 3689
16 Saini S, Srivastava A P, Neogy S. The effect of Ag addition on the crystallization kinetics and glass forming ability of Zr-(CuAg)-Al bulk metallic glass [J]. J. Alloys Compd., 2019, 772: 961
17 Yang Y J, Cheng B Y, Jin Z S, et al. Crystallization kinetics and mechanical properties of Zr56Cu24Al9Ni7-xTi4Agx (x=0, 1, 3, 5, and 7) metallic glasses [J]. J. Alloys Compd., 2020, 816: 152589
18 Rahvard M M, Tamizifar M, Ali Boutorabi S M. The effect of Ag addition on the non-isothermal crystallization kinetics and fragility of Zr56Co28Al16 bulk metallic glass [J]. J. Non-Cryst. Solids, 2018, 481: 74
19 Wang Z, Ketov S V, Chen C L, et al. Nucleation and thermal stability of an icosahedral nanophase during the early crystallization stage in Zr-Co-Cu-Al metallic glasses [J]. Acta Mater., 2017, 132: 298
20 Wang W H. The elastic properties, elastic models and elastic perspectives of metallic glasses [J]. Prog. Mater. Sci., 2012, 57: 487
21 Dandana W, Hajlaoui K. Effect of hydrogen addition on the mechanical properties of Zr-based metallic glass [J]. J. Alloys Compd., 2018, 742: 563
22 Bian Z, He G, Chen G L. Investigation of shear bands under compressive testing for Zr-base bulk metallic glasses containing nanocrystals [J]. Scr. Mater., 2002, 46: 407
23 Zan Y, Wang W H, Greer A L. Making metallic glasses plastic by control of residual stress [J]. Nat. Mater., 2006, 5: 857
24 Ma D Q, Jiao W T, Zhang Y F, et al. Strong work-hardening behavior induced by the solid solution strengthening of dendrites in TiZr-based bulk metallic glass matrix composites [J]. J. Alloys Compd., 2015, 624: 9
25 Hilke S, Rösner H, Geissler D, et al. The influence of deformation on the medium-range order of a Zr-based bulk metallic glass characterized by variable resolution fluctuation electron microscopy [J]. Acta Mater., 2019, 171: 275
26 Fu J, Zhu Y H, Zheng C, et al. Effect of laser shock peening on the compressive deformation and plastic behavior of Zr-based bulk metallic glass [J]. Opt. Lasers Eng., 2016, 86: 53
27 Ma D Q, Li J, Zhang Y F, et al. Effect of compositional tailoring on the glass-forming ability and mechanical properties of TiZr-based bulk metallic glass matrix composites [J]. Mater. Sci. Eng., 2014, A612: 310
28 Zhong H, Chen J, Dai L Y, et al. Effect of counterpart material on the tribological properties of Zr-based bulk metallic glass under relatively heavy loads [J]. Wear, 2016, 346-347: 22
29 Zhong H, Chen J, Dai L Y, et al. Tribological behaviors of Zr-based bulk metallic glass versus Zr-based bulk metallic glass under relative heavy loads [J]. Intermetallics, 2015, 65: 88
30 Yue Y, Wang R, Ma D Q, et al. Fatigue behavior of a Zr-based bulk metallic glass under uniaxial tension-tension and three-point bending loading mode [J]. Intermetallics, 2015, 60: 86
31 Telford M. The case for bulk metallic glass [J]. Mater. Today, 2004, 7: 36
32 Johnson W L. Fundamental aspects of bulk metallic glass formation in multicomponent alloys [J]. Mater. Sci. Forum., 1996, 225: 35
33 Wang W H. The nature and properties of amorphous matter [J]. Prog. Phys., 2013, 33: 177
33 汪卫华. 非晶态物质的本质和特性 [J]. 物理学进展, 2013, 33: 177
34 Yang Y J, Liu W C, Guo D, et al. Research progress in casting forming of bulk amorphous alloy [J]. Spec. Cast. Nonferrous Alloys, 2017, 37: 1354
34 杨玉婧, 刘文超, 郭 栋等. 块体非晶合金铸造成形的研究现状 [J]. 特种铸造及有色合金, 2017, 37: 1354
35 Wu S F. New breakthrough in research and industrialization of amorphous materials in Dongguan EONTEC. Co., Ltd. [EB/OL]. Science and technology media network, (2015-01-27).
35 吴少芳. 宜安科技非晶材料研究与产业化获新突破[EB/OL]. 科技传媒网, (2015-01-27).
36 Ma M Z, Zong H T, Wang H Y, et al. The fluidity and molding ability of glass-forming Zr-based alloy melt [J]. Sci. China, 2008, 51G: 438
37 Ma M Z, Liu R P, Ma D Q, et al. Flowability testing method and device for zirconium base block amorphous alloy melt [P]. Chin Pat, 201310083859.9, 2015马明臻, 刘日平, 马德强等. 锆基块体非晶合金熔体流动性测试方法及其装置 [P]. 中国专利, 201310083859.9, 2015)
38 Ma D Q, Ma X Z, Zhang H Y, et al. Evaluation of casting fluidity and filling capacity of Zr-based amorphous metal melts [J]. J. Iron Steel Res. Int., 2018, 25: 1163
39 Hofmann D C, Roberts S N. Microgravity metal processing: From undercooled liquids to bulk metallic glasses [J]. NPJ Microgravity, 2015, 1: 15003
40 Ramasamy P, Szabo A, Borzel S, et al. High pressure die casting of Fe-based metallic glass [J]. Sci. Rep., 2016, 6: 35258
41 Liu L H, Zhang T, Liu Z Y, et al. Near-net forming complex shaped Zr-based bulk metallic glasses by high pressure die casting [J]. Materials, 2018, 11: 2338
42 Liu L H, Zhang T, Liu Z Y, et al. Abnormal increase of glass forming ability under rising mold temperature in high pressure die casting [J]. Mater. Lett., 2019, 247: 215
43 Inoue A, Nakamura T, Nishiyama N, et al. Mg-Cu-Y bulk amorphous alloys with high tensile strength produced by a high-pressure die casting method [J]. Mater. Trans. JIM, 1992, 33: 937
44 Laws K J, Gun B, Ferry M. Effect of die-casting parameters on the production of high quality bulk metallic glass samples [J]. Mater. Sci. Eng., 2006, A425: 114
45 Inoue A, Nakamura T, Sugita T, et al. Bulky La-Al-TM (TM = transition metal) amorphous alloys with high tensile strength produced by a high-pressure die casting method [J]. Mater. Trans. JIM, 1993, 34: 351
46 Hofmann D C, Polit-Casillas R, Roberts S N, et al. Castable bulk metallic glass strain wave gears: Towards decreasing the cost of high-performance robotics [J]. Sci. Rep., 2016, 6: 37773
47 Ma M Z, Liu R P, Zhang X Y, et al. Casting method of zirconium-based bulk amorphous alloy casting [P]. Chin Pat, 201210367027.5, 2014
47 马明臻, 刘日平, 张新宇等. 一种锆基块体非晶合金铸件的铸造成形方法 [P]. 中国专利, 201210367027.5, 2014)
48 Wang W K, Zhan Z J. Method for phase change refrigeration to induce material controlled coagulation [P]. Chin Pat, 200410079097.6, 2009
48 王文魁, 战再吉. 相变致冷诱发凝固控制材料组织的方法 [P]. 中国专利, 200410079097.6, 2009)
49 Li P J, Liu X S, Pan L L, et al. Manufacture of die casting equipment for Zr based bulk metallic glass and its industrialization progress [A]. Special Issue of 2016 Annual Meeting of Special Casting & Nonferrous Alloy [C]. Nantong: Chinese Society of Mechanical Engineering, Chinese Society of Ordnance Engineering, 2016: 254
49 李培杰, 刘相尚, 潘玲玲等. 锆基非晶合金的压铸设备的开发及产业化进展 [A]. 2016年(第八届)中国压铸、挤压铸造、半固态加工年会 [C]. 南通: 中国机械工程学会, 中国兵工学会, 2016: 254
50 Zhang F L. Amorphous alloy diecasting equipment and amorphous alloy diecasting process [P]. Chin Pat, 201110421420.3, 2015
50 张法亮. 非晶合金压铸设备及非晶合金压铸工艺 [P]. 中国专利, 201110421420.3, 2015)
51 Science and Technology Media Network/Today's Headlines. Yi'an Dongguan EONTEC Co., Ltd. benefits continuously, and the first liquid metal die casting machine in China comes out [EB/OL].(2016-11-30).
51 科技传媒网/今日头条. 宜安科技利好不断, 参股公司国内首台液态金属压铸机问世[EB/OL]. (2016-11-30).
[1] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[2] 王春辉, 杨光昱, 阿热达克·阿力玛斯, 李晓刚, 介万奇. 砂型3DP打印参数对ZL205A合金铸造性能的影响[J]. 金属学报, 2022, 58(7): 921-931.
[3] 李宁, 黄信. 块体非晶合金的3D打印成形研究进展[J]. 金属学报, 2021, 57(4): 529-541.
[4] 张媛媛,林鑫,魏雷,任永明. 激光立体成形退火态Zr55Cu30Al10Ni5粉末的晶化行为[J]. 金属学报, 2017, 53(7): 824-832.
[5] 耿遥祥,张志杰,王英敏,羌建兵,董闯,汪海斌,特古斯. 高Fe含量Fe-B-Si-Hf块体非晶合金的结构-性能关联[J]. 金属学报, 2017, 53(3): 369-375.
[6] 耿遥祥,王英敏,羌建兵,董闯,汪海斌,特古斯. Fe-B-Si-Nb块体非晶合金的成分设计与优化*[J]. 金属学报, 2016, 52(11): 1459-1466.
[7] 杨高林,林鑫,胡桥,张莹,汪志太,李鹏,黄卫东. Zr55Cu33Al10Ni5块体非晶合金退火处理后脉冲激重熔晶化行为[J]. 金属学报, 2013, 49(6): 649-657.
[8] 胡强 曾燮榕 钱海霞 谢胜辉 盛洪超. 铁基块体非晶合金玻璃形成能力与特征自由体积的关系[J]. 金属学报, 2012, 48(11): 1329-1334.
[9] 黄彩云 谌祺 柳林. 无Ni型锆基块体非晶合金在生物模拟体液中的摩擦磨损性能[J]. 金属学报, 2010, 46(6): 681-686.
[10] 张黎楠 谌祺 柳林. Zr55Cu30Al10Ni5块体非晶合金在过冷液态区的流变行为及本构关系[J]. 金属学报, 2009, 45(4): 450-454.
[11] 孙亚娟 魏先顺 黄永江 沈 军. 稀土Gd掺杂对锆基块体非晶合金玻璃形成能力及力学性能的影响[J]. 金属学报, 2009, 45(2): 243-248.
[12] 陈伟荣; 王清; 程旭; 张庆瑜; 董闯 . 基于团簇线的Fe-B-Y基五元块体非晶合金[J]. 金属学报, 2007, 43(8): 797-802 .
[13] 刘兵; 柳林; 陈振宇 . Cu-Zr-Ti-Ni-Mo 块体非晶合金的腐蚀行为及耐蚀机理研究[J]. 金属学报, 2007, 42(1): 82-86 .
[14] 陈德民; 王刚; 孙剑飞; 沈军 . 高应变速率下钨丝增强锆基块体非晶合金复合材料的变形行为[J]. 金属学报, 2006, 42(9): 1003-1008 .
[15] 贺林; 孙军 . 氧对Zr-Cu-Ni-Al-Ti块体非晶合金热稳定性的影响[J]. 金属学报, 2006, 42(2): 134-138 .