Please wait a minute...
金属学报  2021, Vol. 57 Issue (4): 559-566    DOI: 10.11900/0412.1961.2020.00429
  研究论文 本期目录 | 过刊浏览 |
非晶合金粉末作为润滑油添加剂的摩擦学性能
毕甲紫, 刘晓斌, 李然(), 张涛
北京航空航天大学 材料科学与工程学院 北京 100191
Tribological Properties of Polyalphaolefin (PAO6) Lubricant Modified with Particles Additives of Metallic Glass
BI Jiazi, LIU Xiaobin, LI Ran(), ZHANG Tao
School of Materials Science and Engineering, Beihang University, Beijing 100191, China
引用本文:

毕甲紫, 刘晓斌, 李然, 张涛. 非晶合金粉末作为润滑油添加剂的摩擦学性能[J]. 金属学报, 2021, 57(4): 559-566.
Jiazi BI, Xiaobin LIU, Ran LI, Tao ZHANG. Tribological Properties of Polyalphaolefin (PAO6) Lubricant Modified with Particles Additives of Metallic Glass[J]. Acta Metall Sin, 2021, 57(4): 559-566.

全文: PDF(4453 KB)   HTML
摘要: 

采用水雾化法制备得到了超细Mn55Fe25P10B7C3非晶合金粉末,将其作为润滑油添加剂以不同含量加入到PAO6基础油中,利用四球摩擦实验系统评估了粉末添加前后润滑油的摩擦系数、对磨球的磨斑尺寸、表面形貌和表面粗糙度等,从而对比获得了该类非晶合金粉末添加对PAO6基础油摩擦学性能的影响。结果表明,水雾化合金粉末的颗粒呈近球形,筛分过1000目的粉末(中位粒径为2.8 μm)为完全非晶态,且有高占比的亚微米粉末(直径在1 μm以下的颗粒数目约占12%);在PAO6润滑油中添加适量该类具有高硬弹比(H/E)且与摩擦副的模量相接近的超细非晶合金粉末后,其摩擦系数与磨斑直径均显著降低,最大降幅分别可达57.1%和15.6% (对应添加0.5% (质量分数)的非晶粉末时),说明该类非晶粉末润滑油添加剂具有良好的降低摩擦系数和减磨效果;观察对比测试后磨球表面的形貌和粗糙度表明:该类非晶粉末在磨球表面可以产生明显的碾抹效应,从而提高了基础油的减摩和抗磨性能。

关键词 超细非晶粉末非晶合金润滑油添加剂摩擦磨损    
Abstract

In mechanical systems, friction and wear lead to energy loss and machine failure. Lubricants are widely used to minimize friction and wear between moving components. Additives in lubricants significantly improve the quality of the lubricants. In recent years, nanoparticles have started to play more important roles as lubricant additives because of their ability to minimize friction and wear reduction. Despite the advantages of nanoparticles as additives, there are also some challenges to their applications. The most significant challenge is that because of the strong van der Waals force, nanoparticles aggregate in solutions. In addition, their complex process of preparation and high costs limit application in large-scale fields. Metallic glasses (MGs) with long-range disorder structure exhibit novel physical and chemical properties, e.g., high strength and hardness, high elastic limitation, high hardness/elasticity ratio, which make them potentially suitable for use as additives for lubricants. This work presents the tribological properties of friction and wear behaviors of polyalphaolefin (PAO6) oil modified with Mn55Fe25P10B7C3 MG particles at different concentrations (0~0.5%, mass fraction). Four ball tests were performed with an MMW-1A tribotester, XRD was used to examine the structure of the prepared Mn-based powders, SEM was used to observe morphologies of Mn55Fe25P10B7C3 particles and worn surfaces; OM was used to measure the wear scar diameters (WSD) and its roughness was measured with a white light interferometer (WLI). The results show a significant decrease of up to 57.1% and 15.6% for the coefficient of friction (COF) and WSD, respectively, as the addition of 0.5% MG particles in PAO6. The addition of MG particles leads to a decrease of worn surface roughness. With a high hardness/elasticity ratio and similar modulus to the friction pairs, the MG particles show a “smearing-type” wear mechanism, thus enhancing the antifriction and antiwear performance of PAO6 lubricants.

Key wordsultrafine amorphous powder    metallic glass    oil additive    tribology    wear
收稿日期: 2020-10-27     
ZTFLH:  TG139  
基金资助:国家重点研发计划项目(2018YFA0703600);国家自然科学基金项目(51771008);中央高校基本科研业务费专项资金项目(YWF-20-BJ-J-513)
作者简介: 毕甲紫,男,1991年生,博士生
图1  不同Mn55Fe25P10B7C3合金粉末粒径样品的XRD谱
图2  过1000目Mn55Fe25P10B7C3非晶合金粉末的形貌和粒径分布
图3  PAO6基础油中添加不同浓度Mn55Fe25P10B7C3非晶合金粉末下四球测试摩擦系数随时间变化曲线
图4  添加不同浓度Mn55Fe25P10B7C3非晶合金粉末下钢球磨斑形貌的OM像(a) PAO6 (b) PAO6 + 0.1%MG (c) PAO6 + 0.2%MG(d) PAO6 + 0.3%MG (e) PAO6 + 0.4%MG (f) PAO6 + 0.5%MG
图5  未添加粉末与添加0.5%Mn55Fe25P10B7C3非晶合金粉末下钢球磨斑表面形貌的SEM像(a, b) PAO6 (c, d) PAO6 + 0.5%MG
图6  添加不同浓度Mn55Fe25P10B7C3非晶合金粉末下磨斑白光干涉形貌、磨损深度变化曲线与白光干涉粗糙度变化
图7  不同材料的硬弹比-模量对比图
1 Holmberg K, Andersson P, Nylund N O, et al. Global energy consumption due to friction in trucks and buses [J]. Tribol. Int., 2014, 78: 94
2 Demydov D, Adhvaryu A, McCluskey P, et al. Advanced lubricant additives of dialkyldithiophosphate (DDP)-functionalized molybdenum sulfide nanoparticles and their tribological performance for boundary lubrication [A]. Nanoscale Materials in Chemistry: Environmental Applications [C]. America: American Chemical Society, 2010: 137
3 Oberle T L. Wear of metals [J]. JOM, 1951, 3(6): 438
4 Bartz W J. Tribology, lubricants and lubrication engineering—A review [J]. Wear, 1978, 49: 1
5 Mang T, Noll S, Bartels T. Ullmann's Encyclopedia of Industrial Chemistry [M]. 7th Ed., America: Wiley, 2011: 385
6 Tang Z L, Li S H. A review of recent developments of friction modifiers for liquid lubricants (2007-present) [J]. Curr. Opin. Solid State Mater. Sci., 2014, 18 119
7 Gulzar M, Masjuki H H, Kalam M A, et al. Tribological performance of nanoparticles as lubricating oil additives [J]. J. Nanopart. Res., 2016, 18: 223
8 Shahnazar S, Bagheri S, Abd Hamid S B. Enhancing lubricant properties by nanoparticle additives [J]. Int. J. Hydrogen Energy, 2016, 41: 3153
9 Zhang B S, Xu B S, Xu Y, et al. Cu nanoparticles effect on the tribological properties of hydrosilicate powders as lubricant additive for steel-steel contacts [J]. Tribol. Int., 2011, 44: 878
10 Rawat S S, Harsha A P, Das S, et al. Effect of CuO and ZnO nano-additives on the tribological performance of paraffin oil-based lithium grease [J]. Tribol. Trans., 2020, 63: 90
11 Zhang Y B, Li C H, Jia D Z, et al. Experimental evaluation of MoS2 nanoparticles in jet MQL grinding with different types of vegetable oil as base oil [J]. J. Cleaner Prod., 2015, 87: 930
12 Kong L H, Sun J L, Bao Y Y, et al. Effect of TiO2 nanoparticles on wettability and tribological performance of aqueous suspension [J]. Wear, 2017, 376-377: 786
13 Luo T, Wei X W, Huang X, et al. Tribological properties of Al2O3 nanoparticles as lubricating oil additives [J]. Ceram. Int., 2014, 40: 7143
14 Singh Y, Sharma A, Singh N K, et al. Effect of SiC nanoparticles concentration on novel feedstock Moringa Oleifera chemically treated with neopentylglycol and their trobological behavior [J]. Fuel, 2020, 280: 118630
15 Marko M, Kyle J, Branson B T, et al. Tribological improvements of dispersed nanodiamond additives in lubricating mineral oil [J]. J. Tribol., 2014, 137: 011802
16 Wu Y Y, Tsui W C, Liu T C. Experimental analysis of tribological properties of lubricating oils with nanoparticle additives [J]. Wear, 2007, 262: 819
17 Zhou X D, Fu X, Shi H Q, et al. Lubricating properties of Cyanex 302-modified MoS2 microspheres in base oil 500SN [J]. Lubr. Sci., 2007, 19: 71
18 Liu G, Li X, Qin B, et al. Investigation of the mending effect and mechanism of copper nano-particles on a tribologically stressed surface [J]. Tribol. Lett., 2004, 17: 961
19 Xu T, Zhao J Z, Xu K. The ball-bearing effect of diamond nanoparticles as an oil additive [J]. J. Phys., 1996, 29D: 2932
20 Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta Mater., 2000, 48: 279
21 Ashby M F, Greer A L. Metallic glasses as structural materials [J]. Scr. Mater., 2006, 54: 321
22 Inoue A, Takeuchi A. Recent development and application products of bulk glassy alloys [J]. Acta Mater., 2011, 59: 2243
23 Johnson W L. Bulk amorphous metal—An emerging engineering material [J]. JOM, 2002, 54(3): 40
24 Wang W H, Luo P. The dynamic behavior hidden in the long time scale of metallic glasses and its effect on the properties [J]. Acta Metall. Sin., 2018, 54: 1479
24 汪卫华, 罗 鹏. 金属玻璃中隐藏在长时间尺度下的动力学行为及其对性能的影响 [J]. 金属学报, 2018, 54: 1479
25 Leyland A, Matthews A. On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimised tribological behaviour [J]. Wear, 2000, 246: 1
26 Liu R, Li D Y. Modification of Archard's equation by taking account of elastic/pseudoelastic properties of materials [J]. Wear, 2001, 251: 956
27 Finkin E F. Examination of abrasion resistance criteria for some ductile metals [J]. J. Lubr. Technol., 1974, 96: 210
28 Leyland A, Matthews A. Design criteria for wear-resistant nanostructured and glassy-metal coatings [J]. Surf. Coat. Technol., 2004, 177-178: 317
29 Chen Y J, Qiang J B, Dong C. Smearing-type wear behavior of Al62Cu25.5Fe12.5 quasicrystal abrasive on soft metals [J]. Intermetallics, 2016, 68: 23
30 Chen Y J, Hu X G, Qiang J B, et al. Quasicrystal abrasive polishing on soft metals via a characteristic smearing wear mechanism for efficient surface flattening, hardening and corrosion enhancement [J]. Acta Metall. Sin., 2016, 52: 1353
30 陈永君, 胡小刚, 羌建兵等. 准晶磨料的“碾抹”特性对软金属表面的平整性、硬度及耐蚀性的影响 [J]. 金属学报, 2016, 52: 1353
31 Zhang T, Yuan W J, Gong Z L. AlcCuaXb alloy powder engine oil additive applicable to engine and preparation method thereof [P]. Chin Pat, 200910084840.X, 2009
31 张 涛, 员文杰, 宫志利. 一种适用于发动机的AlcCuaXb合金粉机油添加剂及其制备方法 [P]. 中国专利, 200910084840.X, 2009)
32 Wang W H. Elastic moduli and behaviors of metallic glasses [J]. J. Non-Cryst. Solids, 2005, 351: 1481
33 Xu T, Li R, Xiao R J, et al. Tuning glass formation and brittle behaviors by similar solvent element substitution in (Mn, Fe)-based bulk metallic glasses [J]. Mater. Sci. Eng., 2015, A626: 16
34 Peña-Parás L, Taha-Tijerina J, Garza L, et al. Effect of CuO and Al2O3 nanoparticle additives on the tribological behavior of fully formulated oils [J]. Wear, 2015, 332-333: 1256
[1] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[2] 苗军伟, 王明亮, 张爱军, 卢一平, 王同敏, 李廷举. AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59(2): 267-276.
[3] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[4] 刘帅帅, 侯超楠, 王恩刚, 贾鹏. Zr61Cu25Al12Ti2Zr52.5Cu17.9Ni14.6Al10Ti5 块体非晶合金过冷液相区的塑性流变行为[J]. 金属学报, 2022, 58(6): 807-815.
[5] 李金富, 李伟. 铝基非晶合金的结构与非晶形成能力[J]. 金属学报, 2022, 58(4): 457-472.
[6] 张世宏, 胡凯, 刘侠, 杨阳. 发电锅炉材料与防护涂层的磨蚀机制与研究展望[J]. 金属学报, 2022, 58(3): 272-294.
[7] 张金勇, 赵聪聪, 吴宜谨, 陈长玖, 陈正, 沈宝龙. (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x 高熵非晶合金薄带的结构特征及其晶化行为[J]. 金属学报, 2022, 58(2): 215-224.
[8] 韩录会, 柯海波, 张培, 桑革, 黄火根. 非晶态U60Fe27.5Al12.5 合金的晶化动力学行为[J]. 金属学报, 2022, 58(10): 1316-1324.
[9] 崔洪芝, 姜迪. 高熵合金涂层研究进展[J]. 金属学报, 2022, 58(1): 17-27.
[10] 王文权, 杜明, 张新戈, 耿铭章. H13钢表面电火花沉积WC-Ni基金属陶瓷涂层微观组织及摩擦磨损性能[J]. 金属学报, 2021, 57(8): 1048-1056.
[11] 陈果, 王新波, 张仁晓, 马成悦, 杨海峰, 周利, 赵运强. 搅拌头转速对2507双相不锈钢搅拌摩擦加工组织及性能的影响[J]. 金属学报, 2021, 57(6): 725-735.
[12] 李宁, 黄信. 块体非晶合金的3D打印成形研究进展[J]. 金属学报, 2021, 57(4): 529-541.
[13] 潘杰, 段峰辉. 非晶合金的回春行为[J]. 金属学报, 2021, 57(4): 439-452.
[14] 胡祥, 葛嘉城, 刘思楠, 伏澍, 吴桢舵, 冯涛, 刘冬, 王循理, 兰司. 具有异常放热现象的Fe-Nb-B-Y非晶合金燃烧机理[J]. 金属学报, 2021, 57(4): 542-552.
[15] 刘日平, 马明臻, 张新宇. 块体非晶合金铸造成形的研究新进展[J]. 金属学报, 2021, 57(4): 515-528.