Please wait a minute...
金属学报  2013, Vol. 29 Issue (4): 385-390    DOI: 10.3724/SP.J.1037.2012.00694
  论文 本期目录 | 过刊浏览 |
利用第一原理研究合金化对γ-TiAl,抗氧化性能的影响
平发平,胡青苗,杨锐
中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016
INVESTIGATION ON EFFECTS OF ALLOYING ON OXIDATION RESISTANCE OFγ-TiAl BY USING  FIRST PRINCIPLE
PING Faping, HU Qingmiao, YANG Ru
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang
全文: PDF(2549 KB)  
摘要: 

利用第一原理平面波赝势方法, 计算了含不同过渡族合金原子时Al2O3TiO2的氧化能, 据此分析了合金化对Al2O3TiO2相对稳定性的影响. 计算结果表明, 几乎所有合金元素均增加Al2O3TiO2的氧化能, 使其稳定性下降. Al2O3TiO2氧化能的差值表明, Nb, Mo, W, Re等显著降低Al2O3相对于TiO2的稳定性, 因此, 可抑制γ-TiAl中Al组分的内氧化, 提高γ-TiAl的高温抗氧化性能.

关键词 第一原理γ-TiAl合金化氧化能相对稳定性内氧化    
Abstract

The oxidation energies of Al2O3 and TiO2 containing different transition metal alloying elements were calculated by using a first-principles plane-wave pseudoptential method, the effect of alloying on the relative stabilities of Al2O3 and TiO2 was also analyzed. The results showed that almost all the alloying elements increased the oxidation energies of Al2O3 and TiO2, i.e., destabilized both Al2O3 and TiO2. Comparing the oxidation energies of Al2O3 and TiO2, it was foud that, W, Mo, Re, Nb, etc., decreased significantly the stabilities of Al2O3 relative to that of TiO2, indicating that these alloying elements may hamper efficiently the inner oxidation of Al in the γ-TiAl matrix so as to increase the high-temperature oxidation resistance of γ-TiAl.

Key wordsfirst principle    γ-TiAl, alloying    oxidation energy    relative stability    internal oxidation
收稿日期: 2012-11-21     
基金资助:

国家重点基础研究发展计划资助项目2011CB606404

通讯作者: 胡青苗     E-mail: qmhu@imr.ac.cn
作者简介: 平发平, 男, 1988年生, 硕士生

引用本文:

平发平,胡青苗,杨锐. 利用第一原理研究合金化对γ-TiAl,抗氧化性能的影响[J]. 金属学报, 2013, 29(4): 385-390.
PING Faping, HU Qingmiao, YANG Ru. INVESTIGATION ON EFFECTS OF ALLOYING ON OXIDATION RESISTANCE OFγ-TiAl BY USING  FIRST PRINCIPLE. Acta Metall Sin, 2013, 29(4): 385-390.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2012.00694      或      https://www.ams.org.cn/CN/Y2013/V29/I4/385

[1] Clemens H, Kestler H.  Adv Eng Mater, 2000; 2: 551


[2] Kim Y W.  JOM, 1989; 41: 24

[3] Subramanian P R, Mendiratta M G, Dimiduk D M, Stucke M A.  Mater Sci Eng, 1997; A239-240: 1

[4] Becker S, Rahmel A, Schorr M, Schutze M.  Oxid Met, 1992; 38: 425

[5] Brady M, Brindley W, Smialek J, Locci I.  JOM, 1996; 48: 46

[6] Niewolak L, Shemet V, Gil A, Singheiser L, Quadakkers J W.  Adv Eng Mater, 2001; 3: 496

[7] Haanappel V A C, Sunderkotter J D, Stroosnijder M F.  Intermetallics, 1999; 7: 529

[8] Nickel H, Zheng N X, Elschner A, Quadakkers W J.  Mikrochim Acta, 1995; 119: 23

[9] Perkins R A, Chiang K T, Meier G H.  Scr Metall, 1987; 21: 1505

[10] Shida Y, Anada H.  Mater Trans JIM, 1994; 35: 623

[11] Shida Y, Anada H.  Oxid Met, 1996; 45: 197

[12] Shida Y, Anada H.  Corros Sci, 1993; 35: 945

[13] Wang F H, Tang Z L, Wu W T.  Oxid Met, 1997; 48: 381

[14] Taniguchi S, Shibata T.  Intermetallics, 1996; 4: S85

[15] Li H, Liu L M, Wang S Q, Ye H Q.  Acta Metall Sin, 2006; 42: 897

(李虹, 刘利明, 王绍青, 叶恒强. 金属学报, 2006; 42: 897)

[16] Li H, Wang S Q, Ye H Q.  J Mater Sci Technol, 2009; 25: 569

[17] Liu S Y, Shang J X, Wang F H, Liu S Y, Yue Z, Xu H B.  Phys Rev, 2009; 80B: 085414

[18] Liu S Y, Shang J X, Wang F H, Yue Z.  Phys Rev, 2009; 79B: 075419

[19] Liu S Y, Shang J X, Wang F H, Yue Z. J Physics: Condens Matter, 2009; 21: 225005

[20] Luthra K L.  Oxid Met, 1991; 36: 475

[21] Rahmel A, Spencer P J.  Oxid Met, 1991; 35: 53

[22] Kresse G, Furthmuller J.  Phys Rev, 1996; 54B: 11169

[23] Kresse G, Furthmuller J.  Comput Mater Sci, 1996; 6: 15

[24] Blochl P E.  Phys Rev, 1994; 50B: 17953

[25] Kresse G, Joubert D.  Phys Rev, 1999; 59B: 1758

[26] Perdew J P, Burke K, Ernzerhof M.  Phys Rev Lett, 1996; 77: 3865

[27] He J, Behera R K, Finnis M W, Li X, Dickey E C, Phillpot S R, Sinnott S B.  Acta Mater, 2007; 55: 4325

[28] Li X, Finnis M W, He J, Behera R K, Phillpot S R, Sinnott S B, Dickey E C.  Acta Mater, 2009; 57: 5882

[29] Abrahams S C, Bernstei J L.  J Chem Phys, 1971; 55: 3206

[30] Matsunaga K, Tanaka T, Yamamoto T, Ikuhara Y.  Phys Rev, 2003; 68B: 085110

[31] Boettger J C.  Phys Rev, 1997; 55B: 750

[32] Damour H, Schiferl D, Denner W, Schulz H, Holzapfel W B.  J Appl Phys, 1978; 49: 4411

[33] Li M S.  High Temperature Corrosion of Metals. Beijing: Metallurgical Industry Press, 2001: 11

(李美栓. 金属的高温腐蚀. 北京: 冶金工业出版社, 2001: 11)

[34] Wang L, Maxisch T, Ceder G.  Phys Rev, 2006; 73B: 195107

[35] Martinez J I, Hansen H A, Rossmeisl J, Norskov J K.  Phys Rev, 2009; 79B: 045120

[36] Sousa C, Illas F.  Phys Rev, 1994; 50B: 13974

[37] Marquez A M, Plata J J, Ortega Y, Sanz J F. J Phys Chem, 2011; 115C: 16970
[1] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[2] 孙新军,刘罗锦,梁小凯,许帅,雍岐龙. 高钛耐磨钢中TiC析出行为及其对耐磨粒磨损性能的影响[J]. 金属学报, 2020, 56(4): 661-672.
[3] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[4] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.
[5] 黎旺,孙倩,江鸿翔,赵九洲. Al-Bi合金凝固过程及微合金化元素Sn的影响[J]. 金属学报, 2019, 55(7): 831-839.
[6] 张正延,柴锋,罗小兵,陈刚,杨才福,苏航. 调质态含Cu高强钢的强化机理及钢中Cu的析出行为[J]. 金属学报, 2019, 55(6): 783-791.
[7] 牛建钢, 肖伟. TiNi合金B2奥氏体中Ti位Ni诱导的晶格失稳[J]. 金属学报, 2019, 55(2): 267-273.
[8] 曾荣昌, 崔蓝月, 柯伟. 医用镁合金:成分、组织及腐蚀[J]. 金属学报, 2018, 54(9): 1215-1235.
[9] 周刚, 叶荔华, 王皞, 徐东生, 孟长功, 杨锐. 六角结构金属中基面/柱面取向转变的孪晶路径及合金化效应的第一性原理研究[J]. 金属学报, 2018, 54(4): 603-612.
[10] 冯宇超, 邢炜伟, 王寿龙, 陈星秋, 李殿中, 李依依. ODS钢中氧化物/铁素体界面捕氢行为的第一原理研究[J]. 金属学报, 2018, 54(2): 325-338.
[11] 惠亚军, 潘辉, 刘锟, 李文远, 于洋, 陈斌, 崔阳. 600 MPa级Nb-Ti微合金化高成形性元宝梁用钢的强化机制[J]. 金属学报, 2017, 53(8): 937-946.
[12] 惠亚军,潘辉,李文远,刘锟,陈斌,崔阳. 1000 MPa级Nb-Ti微合金化超高强度钢加热制度研究[J]. 金属学报, 2017, 53(2): 129-139.
[13] 杨乐, 李秀艳, 卢柯. 材料素化:概念、原理及应用[J]. 金属学报, 2017, 53(11): 1413-1417.
[14] 李劲风,刘丹阳,郑子樵,陈永来,张绪虎. Er微合金化对2055 Al-Li合金微观组织及力学性能的影响*[J]. 金属学报, 2016, 52(7): 821-830.
[15] 吴臣亮,张松,张春华,关锰,谭俊哲. 不锈钢表面FeCoCrAlCuNiMox激光高熵合金化层的相演变*[J]. 金属学报, 2016, 52(7): 797-803.