Please wait a minute...
金属学报  2021, Vol. 57 Issue (2): 129-149    DOI: 10.11900/0412.1961.2020.00347
  综述 本期目录 | 过刊浏览 |
耐热铝基合金研究进展:微观组织设计与析出策略
高一涵, 刘刚(), 孙军()
西安交通大学 金属材料强度国家重点实验室 西安 710049
Recent Progress in High-Temperature Resistant Aluminum-Based Alloys: Microstructural Design and Precipitation Strategy
GAO Yihan, LIU Gang(), SUN Jun()
State Key Laboratory for Mechanical Behavior of Materials, Xi??an Jiaotong University, Xi&#x1001b3 ;an 710049, China
引用本文:

高一涵, 刘刚, 孙军. 耐热铝基合金研究进展:微观组织设计与析出策略[J]. 金属学报, 2021, 57(2): 129-149.
Yihan GAO, Gang LIU, Jun SUN. Recent Progress in High-Temperature Resistant Aluminum-Based Alloys: Microstructural Design and Precipitation Strategy[J]. Acta Metall Sin, 2021, 57(2): 129-149.

全文: PDF(3765 KB)   HTML
摘要: 

工业选材在满足强度要求以保证结构安全之余,通常也需要尽可能兼顾轻量化以使机械结构更加轻盈。当仅仅考虑室温服役性能时,大量的商用铝合金材料因其优异的室温力学性能可供备选,并通常能很好地契合“轻质-高强”这一目标。然而,对于需要在300~500℃中温区间服役的构件,铝合金的上述优势则荡然无存。其主要原因在于传统高强铝合金赖以强化的析出相在200℃以上便将发生快速失稳粗化,导致材料丧失强化效果并快速软化失效。而若以更耐热的钛合金、高温合金等作为替代,则随之带来的结构增重与成本提高又令设计者甚觉“重材轻用”。目前,在>300℃温度区间难以实现安全服役仍是轻质铝基材料开发的难点所在,而其关键的解决方案在于如何寻求微观组织的高温稳定化。本文从耐热铝合金中特异性的微观组织特点出发,综述近期业界在耐热铝基合金开发过程中关于强化相选择、合金化策略以及微观组织热稳定化的进展与内在构建机理,以期能够提供一些耐热轻质合金材料微观组织设计过程的普适性基本理论依据。

关键词 铝基合金高温力学性能微观组织设计热稳定化合金化策略纳米析出相    
Abstract

Many load-bearing industrial settings require light-weight structural materials with adequate strength. Although commercial aluminum (Al) alloys are suitable for room-temperature applications, their strength at elevated temperatures (300-500oC) is largely reduced by coarsening of the strengthening precipitates. However, high-temperature alternatives such as titanium alloys are much heavier and more expensive than Al alloys. Creating microstructures that remain stable over 300oC is an important goal of the aluminum-manufacturing community. This article focuses on the recent development of high-temperature resistant Al-based alloys. Especially, it discusses the unique microstructural features, selection criteria of the strengthening phase, alloying effects, and microstructural stabilization of aluminum. The strategies summarized in this review are expected to realize the new microstructural architectures of light-weight alloys, which are currently limited to low-temperature service.

Key wordsAl-based alloy    high-temperature mechanical property    microstructural design    thermal stabilization    alloying strategy    nanoprecipitate
收稿日期: 2020-09-07     
ZTFLH:  TG146.21  
基金资助:国家自然科学基金项目(51621063);高等学校学科创新引智计划项目(BP2018008)
作者简介: 高一涵,男,1995年生,博士生
图1  铝基金属基复合材料(MMCs)的典型微观组织特征:增强相(黄色)与空洞(黑色)的三维表征结果及相应的二维截面(空洞尺寸以渐变颜色表示)[20];TiB2/α-Al界面上非均匀析出行为与界面失配位错的高角环形暗场扫描透射电子显微镜(HAADF-STEM)表征结果[26]
图2  Al-TM基材料的典型纳米晶结构与第二相颗粒[36]
图3  2xxx、6xxx、7xxx系可时效型铝合金的典型析出相类型[46]
图4  典型的Al-Cu与Al-Sc二元平衡相图,及高温下常见合金化元素在Al基体中的扩散速率汇总[12,62,64~66]
图5  铝基合金与镍基高温合金中析出相界面、晶界及位错核上的溶质偏聚行为[83~85]
图6  一种快速凝固制备的A356合金中的纳米层级结构,包含α-Al基体中的Si纳米颗粒以及共晶Si中的Al纳米颗粒[124]
图7  Al-Ni基与Al-Ce基合金的共晶相形貌及相应的高温力学性能[42,45]
图8  具有核-壳结构的Al3(Sc, Zr, Er)基析出相的APT照片,及数种Al-Sc-Zr-Er基合金在300和400℃的抗蠕变性能[136,139]
图9  代表性的TEM与APT照片展示了Al-Cu-Mg-Ag基合金中Ω相的形貌与成分,及其适应“短期”服役但不耐“长期-高温”耦合服役环境的力学性能特点[152~155]
图10  共格及半共格θ'-Al2Cu/基体界面的偏聚能图谱[169]与三元Mn/Zr/Si偏聚[167]
图11  Al-Cu-Sc RR(回归再时效)合金中Sc在θ'-Al2Cu/基体界面的强烈偏聚行为,及Si诱发的界面Sc原子重排行为[82,91,171]
图12  高通量DFT计算辅助的θ'-Al2Cu界面多元偏聚筛选与Sc-Fe-Si“三明治”型偏聚结构的构建,及对应的Al-Cu-Sc-Fe-Si合金在300℃下具有极为稳定的θ'-Al2Cu与优异的蠕变性能[172]
图13  一种Ag微合金化的Al-Mg-Si合金中G.P.区、β''以及β'相内Ag分布随时效过程的演化规律[57]
1 Nie Z R, Wen S P, Huang H, et al. Research progress of Er-containing aluminum alloy [J]. Chin. J. Nonferracs Met., 2011, 21: 2361
1 聂祚仁, 文胜平, 黄 晖等. 铒微合金化铝合金的研究进展 [J]. 中国有色金属学报, 2011, 21: 2361
2 Wang J G, Wang Z T. Advance on wrought aluminium alloys used for aeronautic and astronautic industry (1) [J]. Light Alloy Fabrication Technol., 2013, 41(8): 1
2 王建国, 王祝堂. 航空航天变形铝合金的进展(1) [J]. 轻合金加工技术, 2013, 41(8): 1
3 Zhou X L, Feng Z Q, Zhu L L, et al. High-pressure strengthening in ultrafine-grained metals [J]. Nature, 2020, 579: 67
4 Ovid'ko I A, Valiev R Z, Zhu Y T. Review on superior strength and enhanced ductility of metallic nanomaterials [J]. Prog. Mater. Sci., 2018, 94: 462
5 Wang G Q, Zhao Y H, Tang Y Y. Research progress of bobbin tool friction stir welding of aluminum alloys: A review [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 13
6 Polmear I J, Couper M J. Design and development of an experimental wrought aluminum alloy for use at elevated temperatures [J]. Metall. Trans., 1988, 19A: 1027
7 Polmear I J, Pons G, Barbaux Y, et al. After Concorde: Evaluation of creep resistant Al-Cu-Mg-Ag alloys [J]. Mater. Sci. Technol., 1999, 15: 861
8 Zhang X M, Liu S D. Aerocraft aluminum alloys and their materials processing [J]. Mater. China, 2013, 32: 39
8 张新明, 刘胜胆. 航空铝合金及其材料加工 [J]. 中国材料进展, 2013, 32: 39
9 Polmear I, StJohn D, Nie J F, et al. Light Alloys: Metallurgy of the Light Metals [M]. 5th Ed., Boston: Butterworth-Heinemann, 2017: 1
10 Gao Y H, Liu G, Sun J. Tailoring the strengthening particles in aluminum alloys by microalloying [J]. Mater. China, 2019, 38: 231
10 高一涵, 刘 刚, 孙 军. 铝合金析出强化颗粒的微合金化调控 [J]. 中国材料进展, 2019, 38: 231
11 Weakley-Bollin S C, Donlon W, Wolverton C, et al. Modeling the age-hardening behavior of Al-Si-Cu alloys [J]. Metall. Mater. Trans., 2004, 35A: 2407
12 Knipling K E, Dunand D C, Seidman D N. Criteria for developing castable, creep-resistant aluminum-based alloys—A review [J]. Z. Metallkd., 2006, 97: 246
13 Zhang J Y, Gao Y H, Yang C, et al. Microalloying Al alloys with Sc: A review [J]. Rare Met., 2020, 39: 636
14 Chakrabarti D J, Laughlin D E. Phase relations and precipitation in Al-Mg-Si alloys with Cu additions [J]. Prog. Mater. Sci., 2004, 49: 389
15 Wang S C, Starink M J. Precipitates and intermetallic phases in precipitation hardening Al-Cu-Mg-(Li) based alloys [J]. Int. Mater. Rev., 2005, 50: 193
16 Wu H, Fan G H. An overview of tailoring strain delocalization for strength-ductility synergy [J]. Prog. Mater. Sci., 2020, 113: 100675
17 Huang X X, Hansen N, Tsuji N. Hardening by annealing and softening by deformation in nanostructured metals [J]. Science, 2006, 312: 249
18 Yang T, Zhao Y L, Li W P, et al. Ultrahigh-strength and ductile superlattice alloys with nanoscale disordered interfaces [J]. Science, 2020, 369: 427
19 Rofman O V, Mikhaylovskaya A V, Kotov A D, et al. AA2024/SiC metal matrix composites simultaneously improve ductility and cracking resistance during elevated temperature deformation [J]. Mater. Sci. Eng., 2020, A790: 139697
20 Kurumlu D, Payton E J, Young M L, et al. High-temperature strength and damage evolution in short fiber reinforced aluminum alloys studied by miniature creep testing and synchrotron microtomography [J]. Acta Mater., 2012, 60: 67
21 Karnesky R A, Meng L, Dunand D C. Strengthening mechanisms in aluminum containing coherent Al3Sc precipitates and incoherent Al2O3 dispersoids [J]. Acta Mater., 2007, 55: 1299
22 Geng R, Zhao Q L, Qiu F, et al. Simultaneously increased strength and ductility via the hierarchically heterogeneous structure of Al-Mg-Si alloys/nanocomposite [J]. Mater. Res. Lett., 2020, 8: 225
23 Tian W S, Zhao Q L, Geng R, et al. Improved creep resistance of Al-Cu alloy matrix composite reinforced with bimodal-sized TiCp [J]. Mater. Sci. Eng., 2018, A713: 190
24 Tian W S, Zhao Q L, Zhang Q Q, et al. Enhanced strength and ductility at room and elevated temperatures of Al-Cu alloy matrix composites reinforced with bimodal-sized TiCp compared with monomodal-sized TiCp [J]. Mater. Sci. Eng., 2018, A724: 368
25 Tan Q Y, Zhang J Q, Sun Q, et al. Inoculation treatment of an additively manufactured 2024 aluminium alloy with titanium nanoparticles [J]. Acta Mater., 2020, 196: 1
26 Ma Y, Addad A, Ji G, et al. Atomic-scale investigation of the interface precipitation in a TiB2 nanoparticles reinforced Al-Zn-Mg-Cu matrix composite [J]. Acta Mater., 2020, 185: 287
27 Ma Z Y, Tjong S C, Wang Z G. Cyclic and static creep behavior of Al-Cu alloy composite reinforced with in-situ Al2O3 and TiB2 particulates [J]. Mater. Sci. Eng., 1999, A264: 177
28 Spigarelli S, Cabibbo M, Evangelista E, et al. Creep properties of an Al-2024 composite reinforced with SiC particulates [J]. Mater. Sci. Eng., 2002, A328: 39
29 Satyaprasad K, Mahajan Y R, Bhanuprasad V V. Strengthening of Al/20 v/o TiC composites by isothermal heat treatment [J]. Scr. Metall. Mater., 1992, 26: 711
30 Liu G, Zhang G J, Jiang F, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility [J]. Nat. Mater., 2013, 12: 344
31 Vogelsang M, Arsenault R J, Fisher R M. An in situ HVEM study of dislocation generation at Al/SiC interfaces in metal matrix composites [J]. Metall. Trans., 1986, 17A: 379
32 Christman T, Suresh S. Microstructural development in an aluminum alloy—SiC whisker composite [J]. Acta Metall., 1988, 36: 1691
33 Starink M J, Wang P, Sinclair I, et al. Microstrucure and strengthening of Al-Li-Cu-Mg alloys and MMCs: I. Analysis and modelling of microstructural changes [J]. Acta Mater., 1999, 47: 3841
34 Krainikov A V, Neikov O D. Rapidly solidified high-temperature aluminum alloys. I. Structure [J]. Powder Metall. Met. Ceram., 2012, 51: 399
35 Skinner D J, Bye R L, Raybould D, et al. Dispersion strengthened Al-Fe-V-Si alloys [J]. Scr. Metall., 1986, 20: 867
36 Davies R K, Randle V, Marshall G J. Continuous recrystallization—Related phenomena in a commercial Al-Fe-Si alloy [J]. Acta Mater., 1998, 46: 6021
37 Peng L M, Zhu S J, Ma Z Y, et al. High temperature creep deformation of an Al-Fe-V-Si Alloy [J]. Mater. Sci. Eng., 1999, A259: 25
38 Inoue A, Kimura H M, Zhang T. High-strength aluminum- and zirconium-based alloys containing nanoquasicrystalline particles [J]. Mater. Sci. Eng., 2000, A294-296: 727
39 Kawamura Y, Mano H, Inoue A. Nanocrystalline aluminum bulk alloys with a high strength of 1420 MPa produced by the consolidation of amorphous powders [J]. Scr. Mater., 2001, 44: 1599
40 Galano M, Audebert F, Escorial A G, et al. Nanoquasicrystalline Al-Fe-Cr-based alloys. Part II. Mechanical properties [J]. Acta Mater., 2009, 57: 5120
41 Suwanpreecha C, Toinin J P, Michi R A, et al. Strengthening mechanisms in Al-Ni-Sc alloys containing Al3Ni microfibers and Al3Sc nanoprecipitates [J]. Acta Mater., 2018, 164: 334
42 Pandey P, Makineni S K, Gault B, et al. On the origin of a remarkable increase in the strength and stability of an Al rich Al-Ni eutectic alloy by Zr addition [J]. Acta Mater., 2019, 170: 205
43 Plotkowski A, Rios O, Sridharan N, et al. Evaluation of an Al-Ce alloy for laser additive manufacturing [J]. Acta Mater., 2017, 126: 507
44 Sims Z C, Rios O R, Weiss D, et al. High performance aluminum-cerium alloys for high-temperature applications [J]. Mater. Horiz., 2017, 4: 1070
45 Liu Y, Michi R A, Dunand D C. Cast near-eutectic Al-12.5 wt.% Ce alloy with high coarsening and creep resistance [J]. Mater. Sci. Eng., 2019, A767: 138440
46 Sun W W, Zhu Y M, Marceau R, et al. Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity [J]. Science, 2019, 363: 972
47 Liu G, Zhang G J, Ding X D, et al. Dependence of fracture toughness on multiscale second phase particles in high strength Al alloys [J]. Mater. Sci. Technol., 2003, 19: 887
48 Seidman D N, Marquis E A, Dunand D C. Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys [J]. Acta Mater., 2002, 50: 4021
49 Ardell A J. Precipitation hardening [J]. Metall. Trans., 1985, 16A: 2131
50 Zhu A W, Starke Jr E A. Strengthening effect of unshearable particles of finite size: A computer experimental study [J]. Acta Mater., 1999, 47: 3263
51 Nie J F, Muddle B C. Strengthening of an Al-Cu-Sn alloy by deformation-resistant precipitate plates [J]. Acta Mater., 2008, 56: 3490
52 Lumley R N, Polmear I J. The effect of long term creep exposure on the microstructure and properties of an underaged Al-Cu-Mg-Ag alloy [J]. Scr. Mater., 2004, 50: 1227
53 Gao L, Li K, Ni S, et al. The growth mechanisms of θ′ precipitate phase in an Al-Cu alloy during aging treatment [J]. J. Mater. Sci. Technol., 2021, 61: 25
54 Gao Y H, Cao L F, Kuang J, et al. Dual effect of Cu on the Al3Sc nanoprecipitate coarsening [J]. J. Mater. Sci. Technol., 2020, 37: 38
55 Shen Z J, Ding Q Q, Liu C H, et al. Atomic-scale mechanism of the θ''θ' phase transformation in Al-Cu alloys [J]. J. Mater. Sci. Technol., 2017, 33: 1159
56 Wang S, Zhang C, Li X, et al. First-principle investigation on the interfacial structure evolution of the δ'/θ'/δ' composite precipitates in Al-Cu-Li alloys [J]. J. Mater. Sci. Technol., 2020, 58: 205
57 Weng Y Y, Ding L P, Zhang Z Z, et al. Effect of Ag addition on the precipitation evolution and interfacial segregation for Al-Mg-Si alloy [J]. Acta Mater., 2019, 180: 301
58 Hu Z Q, Zhang X J, Wu S S. Microstructure, mechanical properties and die-filling behavior of high-performance die-cast Al-Mg-Si-Mn alloy [J]. Acta Metall. Sin. (Engl. Lett.), 2015, 28: 1344
59 Wang R H, Jiang S Y, Chen B A, et al. Size effect in the Al3Sc dispersoid-mediated precipitation and mechanical/electrical properties of Al-Mg-Si-Sc alloys [J]. J. Mater. Sci. Technol., 2020, 57: 78
60 Marlaud T, Deschamps A, Bley F, et al. Evolution of precipitate microstructures during the retrogression and re-ageing heat treatment of an Al-Zn-Mg-Cu alloy [J]. Acta Mater., 2010, 58: 4814
61 Li Z M, Jiang H C, Wang Y L, et al. Effect of minor Sc addition on microstructure and stress corrosion cracking behavior of medium strength Al-Zn-Mg alloy [J]. J. Mater. Sci. Technol., 2018, 34: 1172
62 Ringer S P, Hono K. Microstructural evolution and age hardening in aluminium alloys: Atom probe field-ion microscopy and transmission electron microscopy studies [J]. Mater. Charact., 2000, 44: 101
63 Røyset J, Ryum N. Scandium in aluminium alloys [J]. Int. Mater. Rev., 2005, 50: 19
64 Marquis E A, Seidman D N. Coarsening kinetics of nanoscale Al3Sc precipitates in an Al-Mg-Sc alloy [J]. Acta Mater., 2005, 53: 4259
65 Marumo T, Fujikawa S, Hirano K I. Diffusion of zirconium in aluminum [J]. J. Japan Inst. Light Met., 1973, 23: 17
66 Du Y, Chang Y A, Huang B Y, et al. Diffusion coefficients of some solutes in fcc and liquid Al: Critical evaluation and correlation [J]. Mater. Sci. Eng., 2003, A363: 140
67 Ostwald W Z. Analytisch Chemie, Engleman [M]. Leipzig: Engelmann, 1901: 1
68 Ostwald W Z. Blocking of Ostwald ripening allowing long-term stabilization [J]. Phys. Chem., 1901, 37: 385
69 Lifshitz I M, Slezov V V. Kinetics of diffusive decomposition of supersaturated solid solutions [J]. Sov. Phys. JETP, 1959, 35: 331
70 Wagner C. Theorie der alterung von niederschlägen durch umlösen (Ostwald‐Reifung) [J]. Ber. Bunsen. Phys. Chem., 1961, 65: 581
71 Ardell A J. The effect of volume fraction on particle coarsening: Theoretical considerations [J]. Acta Metall., 1972, 20: 61
72 Kuehmann C J, Voorhees P W. Ostwald ripening in ternary alloys [J]. Metall. Mater. Trans., 1996, 27A: 937
73 Philippe T, Voorhees P W. Ostwald ripening in multicomponent alloys [J]. Acta Mater., 2013, 61: 4237
74 Ardell A J, Ozolins V. Trans-interface diffusion-controlled coarsening [J]. Nat. Mater., 2005, 4: 309
75 Calderon H A, Voorhees P W, Murray J L, et al. Ostwald ripening in concentrated alloys [J]. Acta Metall. Mater., 1994, 42: 991
76 Greenwood G W. The growth of dispersed precipitates in solutions [J]. Acta Metall., 1956, 4: 243
77 Boyd J D, Nicholson R B. The coarsening behaviour of θ″ and θ′precipitates in two Al-Cu alloys [J]. Acta Metall., 1971, 19: 1379
78 Orthacker A, Haberfehlner G, Taendl J, et al. Diffusion-defining atomic-scale spinodal decomposition within nanoprecipitates [J]. Nat. Mater., 2018, 17: 1101
79 Liu G, Zhang G J, Ding X D, et al. Modeling the strengthening response to aging process of heat-treatable aluminum alloys containing plate/disc- or rod/needle-shaped precipitates [J]. Mater. Sci. Eng., 2003, A344: 113
80 Radmilovic V, Ophus C, Marquis E A, et al. Highly monodisperse core-shell particles created by solid-state reactions [J]. Nat. Mater., 2011, 10: 710
81 Wettergren K, Schweinberger F F, Deiana D, et al. High sintering resistance of size-selected platinum cluster catalysts by suppressed Ostwald ripening [J]. Nano Lett., 2014, 14: 5803
82 Gao Y H, Yang C, Zhang J Y, et al. Stabilizing nanoprecipitates in Al-Cu alloys for creep resistance at 300oC [J]. Mater. Res. Lett., 2019, 7: 18
83 Rosalie J M, Bourgeois L. Silver segregation to θ′ (Al2Cu)-Al interfaces in Al-Cu-Ag alloys [J]. Acta Mater., 2012, 60: 6033
84 Wu G, Liu C, Sun L G, et al. Hierarchical nanostructured aluminum alloy with ultrahigh strength and large plasticity [J]. Nat. Commun., 2019, 10: 5099
85 Ding Q Q, Li S Z, Chen L Q, et al. Re segregation at interfacial dislocation network in a nickel-based superalloy [J]. Acta Mater., 2018, 154: 137
86 Booth-Morrison C, Mao Z, Diaz M, et al. Role of silicon in accelerating the nucleation of Al3(Sc, Zr) precipitates in dilute Al-Sc-Zr alloys [J]. Acta Mater., 2012, 60: 4740
87 Vo N Q, Dunand D C, Seidman D N. Improving aging and creep resistance in a dilute Al-Sc alloy by microalloying with Si, Zr and Er [J]. Acta Mater., 2014, 63: 73
88 Vo N Q, Dunand D C, Seidman D N. Role of silicon in the precipitation kinetics of dilute Al-Sc-Er-Zr alloys [J]. Mater. Sci. Eng., 2016, A677: 485
89 Gao Y H, Cao L F, Kuang J, et al. Assembling dual precipitates to improve high-temperature resistance of multi-microalloyed Al-Cu alloys [J]. J. Alloys Compd., 2020, 822: 153629
90 Michi R A, Perrin Toinin J, Farkoosh A R, et al. Effects of Zn and Cr additions on precipitation and creep behavior of a dilute Al-Zr-Er-Si alloy [J]. Acta Mater., 2019, 181: 249
91 Gao Y H, Cao L F, Yang C, et al. Co-stabilization of θ'-Al2Cu and Al3Sc precipitates in Sc-microalloyed Al-Cu alloy with enhanced creep resistance [J]. Mater. Today Nano, 2019, 6: 100035
92 Fuller C B, Murray J L, Seidman D N. Temporal evolution of the nanostructure of Al(Sc, Zr) alloys: Part I—Chemical compositions of Al3(Sc1-xZrx) precipitates [J]. Acta Mater., 2005, 53: 5401
93 van Dalen M E, Dunand D C, Seidman D N. Effects of Ti additions on the nanostructure and creep properties of precipitation-strengthened Al-Sc alloys [J]. Acta Mater., 2005, 53: 4225
94 van Dalen M E, Seidman D N, Dunand D C. Creep- and coarsening properties of Al-0.06 at.% Sc-0.06 at.% Ti at 300-450oC [J]. Acta Mater., 2008, 56: 4369
95 Knipling K E, Dunand D C. Creep resistance of cast and aged Al-0.1Zr and Al-0.1Zr-0.1Ti (at.%) alloys at 300-400oC [J]. Scr. Mater., 2008, 59: 387
96 Esquivel J, Gupta R K. Corrosion behavior and hardness of Al-M (M: Mo, Si, Ti, Cr) alloys [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 333
97 Vander Voort G, Asensio-Lozano J. The Al-Si phase diagram [J]. Microsc. Microanal., 2009, 15: 60
98 Liu D, Atkinson H V, Jones H. Thermodynamic prediction of thixoformability in alloys based on the Al-Si-Cu and Al-Si-Cu-Mg systems [J]. Acta Mater., 2005, 53: 3807
99 Biswas A, Siegel D J, Seidman D N. Simultaneous segregation at coherent and semicoherent heterophase interfaces [J]. Phys. Rev. Lett., 2010, 105: 076102
100 Hernandez-Sandoval J, Garza-Elizondo G H, Samuel A M, et al. The ambient and high temperature deformation behavior of Al-Si-Cu-Mg alloy with minor Ti, Zr, Ni additions [J]. Mater. Des., 2014, 58: 89
101 Mørtsell E A, Qian F, Marioara C D, et al. Precipitation in an A356 foundry alloy with Cu additions—A transmission electron microscopy study [J]. J. Alloys Compd., 2019, 785: 1106
102 Baruch L J, Raju R, Balasubramanian V, et al. Influence of multi-pass friction stir processing on microstructure and mechanical properties of die cast Al-7Si-3Cu aluminum alloy [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29: 431
103 Nafisi S, Lashkari O, Ghomashchi R, et al. Microstructure and rheological behavior of grain refined and modified semi-solid A356 Al-Si slurries [J]. Acta Mater., 2006, 54: 3503
104 Barrirero J, Li J H, Engstler M, et al. Cluster formation at the Si/liquid interface in Sr and Na modified Al-Si alloys [J]. Scr. Mater., 2016, 117: 16
105 Qiu C R, Miao S N, Li X R, et al. Synergistic effect of Sr and La on the microstructure and mechanical properties of A356.2 alloy [J]. Mater. Des., 2017, 114: 563
106 Wang T M, Zhao Y F, Chen Z N, et al. Combining effects of TiB2 and La on the aging behavior of A356 alloy [J]. Mater. Sci. Eng., 2015, A644: 425
107 Zamani M, Morini L, Ceschini L, et al. The role of transition metal additions on the ambient and elevated temperature properties of Al-Si alloys [J]. Mater. Sci. Eng., 2017, A693: 42
108 Xu C, Xiao W L, Zheng R X, et al. The synergic effects of Sc and Zr on the microstructure and mechanical properties of Al-Si-Mg alloy [J]. Mater. Des., 2015, 88: 485
109 Pramod S L, Ravikirana, Rao A K P, et al. Effect of Sc addition and T6 aging treatment on the microstructure modification and mechanical properties of A356 alloy [J]. Mater. Sci. Eng., 2016, A674: 438
110 Pandee P, Patakham U, Limmaneevichitr C. Microstructural evolution and mechanical properties of Al-7Si-0.3Mg alloys with erbium additions [J]. J. Alloys Compd., 2017, 728: 844
111 Xing Y, Jia Z H, Li J H, et al. Microstructure and mechanical properties of foundry Al-Si-Cu-Hf alloy [J]. Mater. Sci. Eng., 2018, A722: 197
112 Jia Z H, Huang H L, Wang X L, et al. Hafnium in aluminum alloys: A review [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29: 105
113 Mao F, Yan G Y, Xuan Z J, et al. Effect of Eu addition on the microstructures and mechanical properties of A356 aluminum alloys [J]. J. Alloys Compd., 2015, 650: 896
114 Kakitani R, Cruz C B, Lima T S, et al. Transient directional solidification of a eutectic Al-Si-Ni alloy: Macrostructure, microstructure, dendritic growth and hardness [J]. Materialia, 2019, 7: 100358
115 Asghar Z, Requena G, Boller E. Three-dimensional rigid multiphase networks providing high-temperature strength to cast AlSi10Cu5Ni1-2 piston alloys [J]. Acta Mater., 2011, 59: 6420
116 Liao H C, Tang Y Y, Suo X J, et al. Dispersoid particles precipitated during the solutionizing course of Al-12 wt%Si-4 wt%Cu-1.2 wt%Mn alloy and their influence on high temperature strength [J]. Mater. Sci. Eng., 2017, A699: 201
117 Pandee P, Gourlay C M, Belyakov S A, et al. Eutectic morphology of Al-7Si-0.3Mg alloys with scandium additions [J]. Metall. Mater. Trans., 2014, 45A: 4549
118 Rokhlin L L, Dobatkina T V, Kharakterova M L. Structure of the phase equilibrium diagrams of aluminum alloys with scandium [J]. Powder Metall. Met. Ceram., 1997, 36: 128
119 Zakharov V V, Rostova T D. Effect of scandium, transition metals, and admixtures on strengthening of aluminum alloys due to decomposition of the solid solution [J]. Met. Sci. Heat Treat., 2007, 49: 435
120 Bo H, Liu L B, Jin Z P. Thermodynamic analysis of Al-Sc, Cu-Sc and Al-Cu-Sc system [J]. J. Alloys Compd., 2010, 490: 318
121 Jia M, Zheng Z Q, Gong Z. Microstructure evolution of the 1469 Al-Cu-Li-Sc alloy during homogenization [J]. J. Alloys Compd., 2014, 614: 131
122 Kairy S K, Rouxel B, Dumbre J, et al. Simultaneous improvement in corrosion resistance and hardness of a model 2xxx series Al-Cu alloy with the microstructural variation caused by Sc and Zr additions [J]. Corros. Sci., 2019, 158: 108095
123 Du Y, Liu S H, Zhang L J, et al. An overview on phase equilibria and thermodynamic modeling in multicomponent Al alloys: Focusing on the Al-Cu-Fe-Mg-Mn-Ni-Si-Zn system [J]. Calphad, 2011, 35: 427
124 Dang B, Zhang X, Chen Y Z, et al. Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy [J]. Sci. Rep., 2016, 6: 30874
125 Zhang X, Huang L K, Zhang B, et al. Enhanced strength and ductility of A356 alloy due to composite effect of near-rapid solidification and thermo-mechanical treatment [J]. Mater. Sci. Eng., 2019, A753: 168
126 Okamoto H. Al-Ni (aluminum-nickel) [J]. J. Phase Equilib. Diffus., 2004, 25: 394
127 Okamoto H. Al-Ce (aluminum-cerium) [J]. J. Phase Equilib. Diffus., 2011, 32: 392
128 Suwanpreecha C, Pandee P, Patakham U, et al. New generation of eutectic Al-Ni casting alloys for elevated temperature services [J]. Mater. Sci. Eng., 2018, A709: 46
129 Sun Y, Hung C, Hebert R J, et al. Eutectic microstructures in dilute Al-Ce and Al-Co alloys [J]. Mater. Charact., 2019, 154: 269
130 Belov N A, Khvan A V. The ternary Al-Ce-Cu phase diagram in the aluminum-rich corner [J]. Acta Mater., 2007, 55: 5473
131 Tiwary C S, Kashyap S, Chattopadhyay K. Development of alloys with high strength at elevated temperatures by tuning the bimodal microstructure in the Al-Cu-Ni eutectic system [J]. Scr. Mater., 2014, 93: 20
132 Tiwary C S, Kashyap S, Kim D H, et al. Al based ultra-fine eutectic with high room temperature plasticity and elevated temperature strength [J]. Mater. Sci. Eng., 2015, A639: 359
133 Marquis E A, Seidman D N. Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys [J]. Acta Mater., 2001, 49: 1909
134 Booth-Morrison C, Dunand D C, Seidman D N. Coarsening resistance at 400oC of precipitation-strengthened Al-Zr-Sc-Er alloys [J]. Acta Mater., 2011, 59: 7029
135 Booth-Morrison C, Seidman D N, Dunand D C. Effect of Er additions on ambient and high-temperature strength of precipitation-strengthened Al-Zr-Sc-Si alloys [J]. Acta Mater., 2012, 60: 3643
136 Erdeniz D, Nasim W, Malik J, et al. Effect of vanadium micro-alloying on the microstructural evolution and creep behavior of Al-Er-Sc-Zr-Si alloys [J]. Acta Mater., 2017, 124: 501
137 De Luca A, Seidman D N, Dunand D C. Effects of Mo and Mn microadditions on strengthening and over-aging resistance of nanoprecipitation-strengthened Al-Zr-Sc-Er-Si alloys [J]. Acta Mater., 2018, 165: 1
138 Vo N Q, Seidman D N, Dunand D C. Effect of Si micro-addition on creep resistance of a dilute Al-Sc-Zr-Er alloy [J]. Mater. Sci. Eng., 2018, A734: 27
139 De Luca A, Seidman D N, Dunand D C. Mn and Mo additions to a dilute Al-Zr-Sc-Er-Si-based alloy to improve creep resistance through solid-solution- and precipitation-strengthening [J]. Acta Mater., 2020, 194: 60
140 Guan R G, Shen Y F, Zhao Z Y, et al. A high-strength, ductile Al-0.35Sc-0.2Zr alloy with good electrical conductivity strengthened by coherent nanosized-precipitates [J]. J. Mater. Sci. Technol., 2017, 33: 215
141 Karnesky R A, Dunand D C, Seidman D N. Evolution of nanoscale precipitates in Al microalloyed with Sc and Er [J]. Acta Mater., 2009, 57: 4022
142 Krug M E, Dunand D C, Seidman D N. Effects of Li additions on precipitation-strengthened Al-Sc and Al-Sc-Yb alloys [J]. Acta Mater., 2011, 59: 1700
143 Wen S P, Gao K Y, Li Y, et al. Synergetic effect of Er and Zr on the precipitation hardening of Al-Er-Zr alloy [J]. Scr. Mater., 2011, 65: 592
144 Wen S P, Gao K Y, Huang H, et al. Precipitation evolution in Al-Er-Zr alloys during aging at elevated temperature [J]. J. Alloys Compd., 2013, 574: 92
145 Liu X X, Du Y, Liu S H, et al. Phase equilibria and crystal structure of ternary compounds in Al-rich corner of Al-Er-Y system at 673 and 873K [J]. J. Mater. Sci. Technol., 2021, 60: 128
146 Wen S P, Xing Z B, Huang H, et al. The effect of erbium on the microstructure and mechanical properties of Al-Mg-Mn-Zr alloy [J]. Mater. Sci. Eng., 2009, A516: 42
147 Gong B, Wen S P, Huang H, et al. Evolution of nanoscale Al3(ZrxEr1-x) precipitates in Al-6Mg-0.7Mn-0.1Zr-0.3Er alloy during annealing [J]. Acta Metall. Sin., 2010, 46: 850
147 宫 博, 文胜平, 黄 晖等. 退火过程Al-6Mg-0.7Mn-0.1Zr-0.3Er合金中纳米Al3(ZrxEr1-x)析出相的演化 [J]. 金属学报, 2010, 46: 850
148 Wu H, Wen S P, Wu X L, et al. A study of precipitation strengthening and recrystallization behavior in dilute Al-Er-Hf-Zr alloys [J]. Mater. Sci. Eng., 2015, A639: 307
149 Nie Z R. The effect and progress of alloying elements in aluminium [J]. China Nonferrous Met., 2009, (22): 56
149 聂祚仁. 铝材中合金元素的作用与发展 [J]. 中国有色金属, 2009, (22): 56
150 Bourgeois L, Dwyer C, Weyland M, et al. The magic thicknesses of θ′ precipitates in Sn-microalloyed Al-Cu [J]. Acta Mater., 2012, 60: 633
151 Zheng Y H, Liu Y X, Wilson N, et al. Solute segregation induced sandwich structure in Al-Cu(-Au) alloys [J]. Acta Mater., 2020, 184: 17
152 Bai S, Huang T T, Xu H, et al. Effects of small Er addition on the microstructural evolution and strength properties of an Al-Cu-Mg-Ag alloy aged at 200oC [J]. Mater. Sci. Eng., 2019, A766: 138351
153 Li J H, An Z H, Hage F S, et al. Solute clustering and precipitation in an Al-Cu-Mg-Ag-Si model alloy [J]. Mater. Sci. Eng., 2019, A760: 366
154 Gariboldi E, Bassani P, Albu M, et al. Presence of silver in the strengthening particles of an Al-Cu-Mg-Si-Zr-Ti-Ag alloy during severe overaging and creep [J]. Acta Mater., 2017, 125: 50
155 Bai S, Zhou X W, Liu Z Y, et al. Effects of Ag variations on the microstructures and mechanical properties of Al-Cu-Mg alloys at elevated temperatures [J]. Mater. Sci. Eng., 2014, A611: 69
156 Duan S Y, Wu C L, Gao Z, et al. Interfacial structure evolution of the growing composite precipitates in Al-Cu-Li alloys [J]. Acta Mater., 2017, 129: 352
157 Zhu Y K, Poplawsky J D, Li S R, et al. Localized corrosion at nm-scale hardening precipitates in Al-Cu-Li alloys [J]. Acta Mater., 2020, 189: 204
158 Chen Q H, Lin S B, Yang C L, et al. Effect of ultrasonic impact on the microstructure of welded joint of 2195 Al-Li alloy [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29: 367
159 Chen R, Xu Q Y, Liu B C. Simulation of the dendrite morphology and microsegregation in solidification of Al-Cu-Mg aluminum alloys [J]. Acta Metall. Sin. (Engl. Lett.), 2015, 28: 173
160 Reich L, Murayama M, Hono K. Evolution of Ω phase in an Al-Cu-Mg-Ag alloy—A three-dimensional atom probe study [J]. Acta Mater., 1998, 46: 6053
161 Lumley R N, Morton A J, Polmear I J. Enhanced creep performance in an Al-Cu-Mg-Ag alloy through underageing [J]. Acta Mater., 2002, 50: 3597
162 Hutchinson C R, Fan X, Pennycook S J, et al. On the origin of the high coarsening resistance of Ω plates in Al-Cu-Mg-Ag Alloys [J]. Acta Mater., 2001, 49: 2827
163 Biswas A, Siegel D J, Wolverton C, et al. Precipitates in Al-Cu alloys revisited: Atom-probe tomographic experiments and first-principles calculations of compositional evolution and interfacial segregation [J]. Acta Mater., 2011, 59: 6187
164 Chen B A, Liu G, Wang R H, et al. Effect of interfacial solute segregation on ductile fracture of Al-Cu-Sc alloys [J]. Acta Mater., 2013, 61: 1676
165 Yang C, Zhang P, Shao D, et al. The influence of Sc solute partitioning on the microalloying effect and mechanical properties of Al-Cu alloys with minor Sc addition [J]. Acta Mater., 2016, 119: 68
166 Gao Y H, Kuang J, Zhang J Y, et al. Tailoring precipitation strategy to optimize microstructural evolution, aging hardening and creep resistance in an Al-Cu-Sc alloy by isochronal aging [J]. Mater. Sci. Eng., 2020, A795: 139943
167 Shyam A, Roy S, Shin D, et al. Elevated temperature microstructural stability in cast AlCuMnZr alloys through solute segregation [J]. Mater. Sci. Eng., 2019, A765: 138279
168 Poplawsky J D, Milligan B K, Allard L F, et al. The synergistic role of Mn and Zr/Ti in producing θ′/L12 co-precipitates in Al-Cu alloys [J]. Acta Mater., 2020, 194: 577
169 Shin D, Shyam A, Lee S, et al. Solute segregation at the Al/θ′-Al2Cu interface in Al-Cu alloys [J]. Acta Mater., 2017, 141: 327
170 Yao D M, Zhao W G, Zhao H L, et al. High creep resistance behavior of the casting Al-Cu alloy modified by La [J]. Scr. Mater., 2009, 61: 1153
171 Gao Y H, Cao L F, Kuang J, et al. Si-mediated reassembly of interfacially segregated Sc atoms in an Al-Cu-Sc alloy exposed to high-temperature creep [J]. J. Alloys Compd., 2020, 845: 156266
172 Gao Y H, Guan P F, Su R, et al. Segregation-sandwiched stable interface suffocates nanoprecipitate coarsening to elevate creep resistance [J]. Mater. Res. Lett., 2020, 8: 446
173 Defay R, Bellemans A, Prigogine I. Surface Tension and Adsorption [M]. London: Longmans, 1966: 1
174 Krakauer B W, Seidman D N. Subnanometer scale study of segregation at grain boundaries in an Fe(Si) alloy [J]. Acta Mater., 1998, 46: 6145
175 Deng Y L, Zhang Y Y, Wan L, et al. Three-stage homogenization of Al-Zn-Mg-Cu alloys containing trace Zr [J]. Metall. Mater. Trans., 2013, 44A: 2470
176 Chookajorn T, Murdoch H A, Schuh C A. Design of stable nanocrystalline alloys [J]. Science, 2012, 337: 951
177 Jiao Z B, Schuh C A. Nanocrystalline Ag-W alloys lose stability upon solute desegregation from grain boundaries [J]. Acta Mater., 2018, 161: 194
178 Nie J F, Zhu Y M, Liu J Z, et al. Periodic segregation of solute atoms in fully coherent twin boundaries [J]. Science, 2013, 340: 957
179 Zhao X J, Chen H W, Wilson N, et al. Direct observation and impact of co-segregated atoms in magnesium having multiple alloying elements [J]. Nat. Commun., 2019, 10: 3243
180 Gao Y H, Cao L F, Kuang J, et al., Solute repositioning to tune the multiple microalloying effects in an Al-Cu alloy with minor Sc, Fe and Si addition [J]. Mater. Sci. Eng. A, 2020: 140509(in press)
181 Allen C M, O'Reilly K A Q, Cantor B, et al. Intermetallic phase selection in 1XXX Al alloys [J]. Prog. Mater. Sci., 1998, 43: 89
182 Zhang L F, Gao J W, Damoah L N W, et al. Removal of iron from aluminum: A review [J]. Miner. Process. Extractive Metall. Rev., 2012, 33: 99
183 Senkov O N, Shagiev M R, Senkova S V, et al. Precipitation of Al3(Sc,Zr) particles in an Al-Zn-Mg-Cu-Sc-Zr alloy during conventional solution heat treatment and its effect on tensile properties [J]. Acta Mater., 2008, 56: 3723
184 Schöbel M, Pongratz P, Degischer H P. Coherency loss of Al3(Sc,Zr) precipitates by deformation of an Al-Zn-Mg alloy [J]. Acta Mater., 2012, 60: 4247
185 Deng Y, Yin Z M, Zhao K, et al. Effects of Sc and Zr microalloying additions and aging time at 120oC on the corrosion behaviour of an Al-Zn-Mg alloy [J]. Corros. Sci., 2012, 65: 288
186 Dorin T, Ramajayam M, Babaniaris S, et al. Precipitation sequence in Al-Mg-Si-Sc-Zr alloys during isochronal aging [J]. Materialia, 2019, 8: 100437
187 Jiang S Y, Wang R H. Grain size-dependent Mg/Si ratio effect on the microstructure and mechanical/electrical properties of Al-Mg-Si-Sc alloys [J]. J. Mater. Sci. Technol., 2019, 35: 1354
188 Wang J T, Xie L, Luo K Y, et al. Improving creep properties of 7075 aluminum alloy by laser shock peening [J]. Surf. Coat. Technol., 2018, 349: 725
189 Guo M X, Li G J, Zhang Y D, et al. Influence of Zn on the distribution and composition of heterogeneous solute-rich features in peak aged Al-Mg-Si-Cu alloys [J]. Scr. Mater., 2019, 159: 5
190 Li K, Béché A, Song M, et al. Atomistic structure of Cu-containing β″ precipitates in an Al-Mg-Si-Cu alloy [J]. Scr. Mater., 2014, 75: 86
191 Pogatscher S, Antrekowitsch H, Werinos M, et al. Diffusion on demand to control precipitation aging: Application to Al-Mg-Si alloys [J]. Phys. Rev. Lett., 2014, 112: 225701
192 Tu W B, Tang J G, Zhang Y, et al. Effect of Sn and Cu addition on the precipitation and hardening behavior of Al-1.0Mg-0.6Si alloy [J]. Mater. Sci. Eng., 2020, A770: 138515
193 Chen K L, Liu C H, Yang J S, et al. Stabilizing Al-Mg-Si-Cu alloy by precipitation nano-phase control [J]. Mater. Sci. Eng., 2020, A769: 138513
194 Liu C H, Ma P P, Zhan L H, et al. Solute Sn-induced formation of composite β′/β″ precipitates in Al-Mg-Si alloy [J]. Scr. Mater., 2018, 155: 68
195 Liu L M, Lai Y X, Liu C H, et al. Optimized combinatorial properties of an AlMgSi(Cu) alloy achieved by a mechanical-thermal combinatorial process [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 751
196 Matsuda K, Teguri D, Uetani Y, et al. Cu-segregation at the Q′/α-Al interface in Al-Mg-Si-Cu alloy [J]. Scr. Mater., 2002, 47: 833
197 Saito T, Ehlers F J H, Lefebvre W, et al. HAADF-STEM and DFT investigations of the Zn-containing β″ phase in Al-Mg-Si alloys [J]. Acta Mater., 2014, 78: 245
198 Ding L P, Jia Z H, Nie J F, et al. The structural and compositional evolution of precipitates in Al-Mg-Si-Cu alloy [J]. Acta Mater., 2018, 145: 437
199 Saito T, Ehlers F J H, Lefebvre W, et al. Cu atoms suppress misfit dislocations at the β″/Al interface in Al-Mg-Si alloys [J]. Scr. Mater., 2016, 110: 6
200 Weng Y Y, Jia Z H, Ding L P, et al. Special segregation of Cu on the habit plane of lath-like β′ and QP2 precipitates in Al-Mg-Si-Cu alloys [J]. Scr. Mater., 2018, 151: 33
201 Liu M, Zhang X P, Körner B, et al. Effect of Sn and In on the natural ageing kinetics of Al-Mg-Si alloys [J]. Materialia, 2019, 6: 100261
202 Zhang Y D, Jin S B, Trimby P W, et al. Dynamic precipitation, segregation and strengthening of an Al-Zn-Mg-Cu alloy (AA7075) processed by high-pressure torsion [J]. Acta Mater., 2019, 162: 19
203 Cao F H, Zheng J X, Jiang Y, et al. Experimental and DFT characterization of η′ nano-phase and its interfaces in Al-Zn-Mg-Cu alloys [J]. Acta Mater., 2019, 164: 207
204 Chung T F, Yang Y L, Shiojiri M, et al. An atomic scale structural investigation of nanometre-sized η precipitates in the 7050 aluminium alloy [J]. Acta Mater., 2019, 174: 351
[1] 周文浩, 谢振家, 郭晖, 尚成嘉. 700 MPa级高塑低碳低合金钢的多相组织调控及性能[J]. 金属学报, 2015, 51(4): 407-416.
[2] 赵海根,李树索,裴延玲,宫声凯,徐惠彬. Ni3Al基单晶合金IC21的微观组织及力学性能[J]. 金属学报, 2015, 51(10): 1279-1287.
[3] 汪波, 王晓姣, 宋辉, 严菊杰, 邱涛, 刘文庆, 李慧. Al-Mg-Si合金时效早期显微组织演变及其对强化的影响*[J]. 金属学报, 2014, 50(6): 685-690.
[4] 陈志勇; 王清江; 刘建荣; 李玉兰; 杨锐; 李晋炜; 刘方军 . Ti-60高温钛合金电子束焊接接头高温下的损伤失效行为研究[J]. 金属学报, 2008, 44(3): 263-271 .
[5] 康沫狂; 朱明 . 淬火合金钢中的奥氏体稳定化[J]. 金属学报, 2005, 41(7): 673-679 .
[6] 赵占奎; 姚可夫; 李建忱; 蒋青 . 超高强度块体Al90Mn8Ce2合金[J]. 金属学报, 2004, 40(4): 355-358 .
[7] 熊华平; 李晓红; 毛唯; 李建平; 马文利; 程耀永 . 表面渗硅处理提高钛铝基合金高温抗氧化性[J]. 金属学报, 2003, 39(1): 66-70 .
[8] 崔传勇; 郭建亭 . 定向凝固NiAl合金的微观组织和高温力学性能Ⅱ.高温力学性能和界面[J]. 金属学报, 2000, 36(11): 1144-1148 .
[9] 朱跃峰;曾大本;黄惠松;吴德海. ZA27合金的高温拉伸性能[J]. 金属学报, 1997, 33(5): 499-503.
[10] 张济山;崔华;胡壮麒;村田纯教;森永正彦;汤川夏夫. 应用d-电子合金设计理论发展新型抗热腐蚀单晶镍基高温合金──Ⅲ.性能评价[J]. 金属学报, 1994, 30(2): 70-78.