Please wait a minute...
金属学报  2020, Vol. 56 Issue (4): 661-672    DOI: 10.11900/0412.1961.2019.00374
  研究论文 本期目录 | 过刊浏览 |
高钛耐磨钢中TiC析出行为及其对耐磨粒磨损性能的影响
孙新军(),刘罗锦,梁小凯,许帅,雍岐龙
钢铁研究总院工程用钢研究所 北京 100081
TiC Precipitation Behavior and Its Effect on Abrasion Resistance of High Titanium Wear-Resistant Steel
SUN Xinjun(),LIU Luojin,LIANG Xiaokai,XU Shuai,YONG Qilong
Department of Structrual Steels, Central Iron & Steel Research Institute, Beijing 100081, China
全文: PDF(23077 KB)   HTML
摘要: 

针对传统低合金耐磨钢主要依靠增加其基体硬度来提高耐磨性,从而导致材料加工性能严重降低的问题,提出通过高钛微合金化及铸坯(锭)原位内生反应,在钢基体中引入超硬TiC颗粒来增强钢的耐磨性,实现了在不增加硬度的同时耐磨性大幅提高。研究发现,钢中TiC颗粒呈现出独特的“微米-亚微米-纳米”三峰分布特征。微米级TiC颗粒来源于在凝固末期发生的L→γ+TiC共晶反应,在后续热轧过程中共晶TiC逐渐实现碎化和均匀化。亚微米TiC颗粒主要是从凝固后的高温奥氏体中析出;纳米级TiC颗粒主要是在热轧过程中从形变奥氏体中析出。考察了钢中TiC含量对耐磨粒磨损性能的影响规律及微观机理,发现相对耐磨性与TiC含量大致呈线性上升的关系,认为微米级粒子对磨损犁沟的阻碍作用是耐磨性增加的主要原因。

关键词 耐磨钢高钛微合金化TiC析出耐磨粒磨损性能    
Abstract

In general, the wear resistance of traditional low alloy wear-resistant steels can be improved by increasing the hardness of steel matrix, but this significantly deteriorates the processing properties of steel, such as weldability, formability and machinability. Therefore, how to improve the wear resistance of steels without increasing the hardness has become an important issue for the study of wear-resistant steels in recent years. In this work, it is prosposed to introduce ultra-hard TiC particles into the matrix of steel by means of high-Ti microalloying and in situ reaction of TiC in billets (ingots), so as to achieve a significant increase in the wear resistance without increasing the hardness. Seven tested steels with different Ti and C contents were firstly fabricated by smelting, hot rolling and heat treatment, then the morphology, size distribution and fraction of precipitates were characterized by means of OM, SEM, EPMA, TEM, physical-chemical phase analysis, etc. Finally, the wear resistance and its mechanisms of the tested steels were investigated. The results show that TiC particles in the tested steels exhibit an unique trimodal distribution characteristic of "micron-submicron-nanometer". The micron-sized TiC particles were originated from the eutectic reaction of L→γ+TiC occuring at the end of solidification; the eutectic TiC was broken up into small fragments and homogenized gradually during the subsequent hot rolling. The submicron-sized particles were mainly precipitated from austenite at relatively high temperature after solidification, and the nano-sized particles were mainly precipitated from deformed austenite at relatively low temperature during hot rolling. The size of precipitates becomes finer at lower precipitation temperature. The relative precipitation-temperature-time (PTT) diagrams of both submicron-sized and nano-sized TiC were calculated, and it is shown that the most rapid precipitation temperature of the submicron-sized TiC is about 208 ℃ higher than that of the nano-sized TiC. The relative wear resistance of the tested steels is found to increase linearly with increasing TiC fraction, and the improvement of wear resistance is mainly due to the obstruction of micron-sized particles on wear furrow.

Key wordswear-resistant steel    high-Ti microalloying    TiC precipitation    abrasion resistance
收稿日期: 2019-11-04     
ZTFLH:  TG142  
基金资助:国家重点研发计划项目(2017YFB0305100)
通讯作者: 孙新军     E-mail: sunxinjun@cisri.com.cn
Corresponding author: Xinjun SUN     E-mail: sunxinjun@cisri.com.cn
作者简介: 孙新军,男,1971年生,正高级工程师,博士

引用本文:

孙新军,刘罗锦,梁小凯,许帅,雍岐龙. 高钛耐磨钢中TiC析出行为及其对耐磨粒磨损性能的影响[J]. 金属学报, 2020, 56(4): 661-672.
Xinjun SUN, Luojin LIU, Xiaokai LIANG, Shuai XU, Qilong YONG. TiC Precipitation Behavior and Its Effect on Abrasion Resistance of High Titanium Wear-Resistant Steel. Acta Metall Sin, 2020, 56(4): 661-672.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00374      或      https://www.ams.org.cn/CN/Y2020/V56/I4/661

SteelCSiMnCrMoTiNiCuVAlsTiCFeCeff.
Ti00.150.190.520.810.300.020.600.220.0020.030Bal.0.15
Ti200.220.220.550.820.310.200.620.230.0050.040.25Bal.0.17
Ti300.230.250.540.810.320.300.620.230.0050.020.38Bal.0.16
Ti400.260.270.550.830.310.390.620.220.0070.020.49Bal.0.16
Ti500.290.260.530.820.310.490.620.220.0080.020.61Bal.0.17
Ti600.310.250.560.820.310.610.610.220.0100.030.76Bal.0.16
Ti700.320.250.550.810.310.700.610.230.0110.030.88Bal.0.15
表1  实验用钢化学成分 (mass fraction / %)
图1  实验用钢轧制与热处理工艺
图2  MLS-225型湿砂橡胶轮式磨损实验机示意图
图3  实验用钢基体组织的SEM和TEM像
图4  实验用钢电解萃取析出相粉末的XRD谱

Steel

Total Ti

Mass fraction of precipitate

Volme fraction of MC

TiMoVCMC
Ti200.200.1890.0940.00320.0600.3460.512
Ti300.300.2920.0840.00490.0850.4660.690
Ti400.390.3760.1050.00450.1090.5940.880
Ti500.490.4720.1100.00600.1340.7221.069
Ti600.610.6010.1190.00700.1670.8941.324
Ti700.700.6800.1170.00630.1870.9901.466
表2  实验用钢物理化学相分析定量结果 (%)
图5  Ti60钢中微米级TiC析出相的OM像
图6  Ti60钢中微米级TiC析出相的SEM像
图7  Ti60钢微米级TiC析出相的EPMA元素分布图
图8  Ti60钢中亚微米级TiC粒子的EPMA成分像和TEM像
图9  Ti60钢中纳米级TiC粒子的TEM像
图10  Ti60钢TiC粒径分布图
图11  Ti60钢铸态组织形貌的OM像
图12  Ti60钢凝固过程Thermo-Calc热力学计算
图13  Ti60钢900 ℃淬火态及随后经过1200和1350 ℃固溶处理后TiC粒子形貌的SEM和TEM像
图14  Ti60钢经不同温度固溶处理后TiC粒子粒度分布(0~300 nm)
图15  TiC固态析出的相对PTT图
图16  实验用钢的硬度、磨损失重和相对耐磨性与TiC质量分数的关系
图17  微米级TiC粒子阻碍犁沟通过的作用方式[5,7]
[1] Pagounis E, Lindroos V K. Development and performance of new hard and wear-resistant engineering materials [J]. J. Mater. Eng. Perform., 1997, 6: 749
[2] Xie Y B, Zhang S W. The Application Status and Development Strategy Research of Tribology Science and Engineering [M]. Beijing: Higher Education Press, 2009: 1135
[2] 谢友柏, 张嗣伟. 摩擦学科学及工程应用现状与发展战略研究 [M]. 北京: 高等教育出版社, 2009: 1135
[3] General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Administration. GB/T 24186-2009 High strength abrasion resistant steel plates for construction machine [S]. Beijing: China Standards Press, 2010
[3] (中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 24186-2009 工程机械用高强度耐磨钢板 [S]. 北京: 中国标准出版社, 2010
[4] Liang X K, Sun X J, Yong Q L, et al. Study on performance of TiC particle reinforced martensite wear-resistant steel [J]. Iron Steel Vanad. Titan., 2017, 38(1): 48
[4] 梁小凯, 孙新军, 雍岐龙等. TiC颗粒强化型马氏体耐磨钢的性能研究 [J]. 钢铁钒钛, 2017, 38(1): 48
[5] Liu L J. TiC precipitation behavior and its effect on properties in high titanium and high wear-resistant steels [D]. Beijing: Central Iron and Steel Research Institute, 2019
[5] 刘罗锦. 高钛高耐磨钢中TiC析出行为及对性能的影响 [D]. 北京: 钢铁研究总院, 2019
[6] Liang X K, Sun X J, Yong Q L, et al. Precipitation of TiC in high Ti steel [J]. J. Iron Steel Res., 2016, 28(9): 71
[6] 梁小凯, 孙新军, 雍岐龙等. 高钛钢中TiC析出机制 [J]. 钢铁研究学报, 2016, 28(9): 71
[7] Liu L J, Liang X K, Liu J, et al. Precipitation process of TiC in low alloy martensitic steel and its effect on wear resistance [J]. ISIJ Int., 2020, 60: 168
[8] Do?an ? N, Hawk J A, Tylczak J H. Wear of cast chromium steels with TiC reinforcement [J]. Wear, 2001, 250: 462
[9] Srivastava A K, Das K. Microstructure and abrasive wear study of (Ti, W)C-reinforced high-manganese austenitic steel matrix composite [J]. Mater. Lett., 2008, 62: 3947
[10] Pagounis E, Lindroos V K, Talvitie M. Influence of reinforcement volume fraction and size on the microstructure and abrasion wear resistance of hot isostatic pressed white iron matrix composites [J] Metall. Mater. Trans., 1996, 27A: 4171
[11] Ni Z F, Sun Y S, Xue F, et al. Evaluation of electroslag remelting in TiC particle reinforced 304 stainless steel [J]. Mater. Sci. Eng., 2011, A528: 5664
[12] Tong X, Li F H, Kuang M, et al. Effects of WC particle size on the wear resistance of laser surface alloyed medium carbon steel [J]. Appl. Surf. Sci., 2012, 258: 3214
[13] Kang N, Ma W Y, Li F H, et al. Microstructure and wear properties of selective laser melted WC reinforced 18Ni-300 steel matrix composite [J]. Vacuum, 2018, 154: 69
[14] Wei S Z, Zhu J H, Xu L J. Effects of vanadium and carbon on microstructures and abrasive wear resistance of high speed steel [J]. Tribol. Int., 2006, 39: 641
[15] Wei S Z, Zhu J H, Xu L J. Research on wear resistance of high speed steel with high vanadium content [J]. Mater. Sci. Eng., 2005, A404: 138
[16] Xu L J, Xing J D, Wei S Z, et al. Study on relative wear resistance and wear stability of high-speed steel with high vanadium content [J]. Wear, 2007, 262: 253
[17] Xu L J, Wei S Z, Xiao F N, et al. Effects of carbides on abrasive wear properties and failure behaviours of high speed steels with different alloy element content [J]. Wear, 2017, 376-377: 968
[18] Kan W H, Proust G, Bhatia V, et al. Slurry erosion, sliding wear and corrosion behavior of martensitic stainless steel composites reinforced in-situ with NbC particles [J]. Wear, 2019, 420-421: 149
[19] Zhang D W, Lei T C, Li F J. Laser cladding of stainless steel with Ni-Cr3C2 for improved wear performance [J]. Wear, 2001, 250: 1372
[20] Lu Q, He G Q, Yang Y, et al. The friction and wear properties of silicon carbide particle reinforced aluminum matrix composite [J]. Met. Funct. Mater., 2015, 22(2): 41
[20] 卢 棋, 何国球, 杨 洋等. SiC颗粒增强铝基复合材料的摩擦磨损性能研究 [J]. 金属功能材料, 2015, 22(2): 41
[21] Ma Y P, Li X L, Wang C H, et al. Microstructure and impact wear resistance of TiN reinforced high manganese steel matrix [J]. J. Iron Steel Res. Int., 2012, 19: 60
[22] Rong W, Tu J P, Guo S Y. Sliding wear behavior of TiB2 nanoparticle reinforced copper matrix in-situ composites under electric current [J]. Mater. Sci. Forum, 2003, 426-432: 2065
[23] Shanmugaselvam P, Sivaraj S, Subash P. Investigating the wear and hardness of aluminium LM25 alloy reinforced with nano Al2O3 and nano TiB2 [J]. Mater. Today, 2019, 16: 1130
[24] Vardavoulias M, Jeandin M, Velasco F, et al. Dry sliding wear mechanism for P/M austenitic stainless steels and their composites containing Al2O3 and Y2O3 particles [J]. Tribol. Int., 1996, 29: 499
[25] Ramachandra M, Abhishek A, Siddeshwar P, et al. Hardness and wear resistance of ZrO2 nano particle reinforced Al nanocomposites produced by powder metallurgy [J]. Proced. Mater. Sci., 2015, 10: 212
[26] Do?an ? N, Hawk J A, Tylczak J H, et al. Wear of titanium carbide reinforced metal matrix composites [J]. Wear, 1999, 225-229: 758
[27] Zhang X N, Lü W J, Zhang D, et al. In situ technique for synthesizing (TiB+TiC)/Ti composites [J]. Scr. Mater, 1999, 41: 39
[28] Mao X P. Titanium Microalloyed Steel [M]. Beijing: Metallurgical Industry Press, 2016: 1
[28] 毛新平. 钛微合金钢 [M]. 北京: 冶金工业出版社, 2016: 1
[29] Kang J Y. Precipitation and strengthening behaviors of titanium/vanadium carbides in tempered martensite [D]. Beijing: Central Iron and Steel Research Institute, 2015
[29] 康俊雨. Ti/V碳化物在回火马氏体中的沉淀析出及其强化行为研究 [D]. 北京: 钢铁研究总院, 2015
[30] Kang J Y, Sun X J, Li Z D, et al. Precipitation and coarsening of TiC and VC in tempering process of low carbon martensite steels [J]. Iron Steel, 2015, 50(10): 64
[30] 康俊雨, 孙新军, 李昭东等. TiC和VC在低碳马氏体钢回火中的析出和粗化 [J]. 钢铁, 2015, 50(10): 64
[31] Yong Q L. Secondary Phases in Steels [M]. Beijing: Metallurgical Industry Press, 2006: 1
[31] 雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 1
[32] Wang Z Q, Yong Q L, Sun X J, et al. An analytical model for the kinetics of strain-induced precipitation in titanium micro-alloyed steels [J]. ISIJ Int., 2012, 52: 1661
[33] Wang Z Q, Mao X P, Yang Z G, et al. Strain-induced precipitation in a Ti micro-alloyed HSLA steel [J]. Mater. Sci. Eng., 2011, A529: 459
[34] Wang Z Q, Zhang H, Guo C H, et al. Effect of molybdenum addition on the precipitation of carbides in the austenite matrix of titanium micro-alloyed steels [J]. J. Mater. Sci., 2016, 51: 4996
[1] 吴翔,左秀荣,赵威威,王中洋. NM500耐磨钢拉伸过程中TiN的破碎机制[J]. 金属学报, 2020, 56(2): 129-136.
[2] 郭文营,胡小强,马晓平,李殿中. TiN析出相对中碳Cr-Mo耐磨钢凝固组织的影响*[J]. 金属学报, 2016, 52(7): 769-777.