Please wait a minute...
金属学报  2020, Vol. 56 Issue (11): 1558-1568    DOI: 10.11900/0412.1961.2020.00112
  本期目录 | 过刊浏览 |
铁基非晶合金局域结构与性能关联:基于微合金化机理研究
耿遥祥1(), 王英敏2
1 江苏科技大学材料科学与工程学院 镇江 212003
2 大连理工大学三束材料改性教育部重点实验室 大连 116024
Local Structure-Property Correlation of Fe-Based Amorphous Alloys: Based on Minor Alloying Research
GENG Yaoxiang1(), WANG Yingmin2
1 School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
2 Key Lab of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024, China
引用本文:

耿遥祥, 王英敏. 铁基非晶合金局域结构与性能关联:基于微合金化机理研究[J]. 金属学报, 2020, 56(11): 1558-1568.
Yaoxiang GENG, Yingmin WANG. Local Structure-Property Correlation of Fe-Based Amorphous Alloys: Based on Minor Alloying Research[J]. Acta Metall Sin, 2020, 56(11): 1558-1568.

全文: PDF(2351 KB)   HTML
摘要: 

基于“团簇+连接原子”局域结构模型,从团簇内部和团簇间原子的关联作用出发,分析非晶合金的局域结构与非晶合金玻璃化转变、形成能力、热稳定性和力学性能之间的关系。并通过分析模型结构中微合金化元素的占位及其对周围原子关联作用的影响,理解非晶合金的微合金化机理。结果表明,团簇内部原子的关联作用对非晶合金的热稳定性有较大影响,而非晶合金的玻璃化转变、形成能力和力学性能主要受到团簇间原子关联作用影响。并以Si合金化Fe-B二元非晶合金及前过渡元素(Zr、Hf、Nb或Ta)和稀土元素(Y、Ce、Pr、Nd、Sm、Gd或Dy)微合金化Fe-B-Si三元非晶合金对所提理论进行实验验证,两者吻合较好。该研究为理解非晶合金的局部结构-性能关联和微合金化元素作用机理提供了新思路。

关键词 铁基非晶合金“团簇+连接原子”模型结构-性能关联微合金化机理实验验证    
Abstract

Fe-based amorphous alloys are well known for their excellent soft magnetic and mechanical properties such as high saturation magnetization (Bs), very low coercive force (Hc), high magnetic permeability (μ), low core loss, and high strength, and they are suitable for application as transformer-core materials and have potential applications as structural materials. The minor addition of early transition metal (ETM) such as Zr, Nb, Mo, Hf, Ta, or W can effectively improve the glass-forming abilities, thermal stability, soft magnetic and mechanical properties of Fe-based metallic glasses. The beneficial effects of the minor addition on the glass-forming ability can generally be classified into three aspects: (1) it favors the formation of the unique atomic dense configurations with small free volumes, strong liquid behavior, and high viscosity, which are significantly different from those for conventional metallic glasses; (2) it makes the melts energetically closer to the crystalline state than other metallic melts due to their high packing density in conjunction with a tendency to develop short-range order; (3) it makes the melts more viscous, which leads to slow crystallization kinetics. Despite these advantages, the fundamental theory about the mechanism of the minor addition of ETM in glass formation and properties tailoring is yet to be fully established. In this study, a "cluster plus glue atom" local structure model has been proposed to explore the local structure-property correlation of metallic glasses. The accessibility of calorimetric glass transition (Tg), glass-forming ability, thermal glass stability, and the mechanical properties of metallic glasses are explained in terms of the intra- and inter-atomic cluster correlations in the amorphous structures. Based on the local structure model, the Tg and its composition dependence micro-hardness and strength have been attributed to the inter-cluster correlation, and the enhancement of intra-cluster correlation due to minor alloying would contribute to the enhanced thermal glass stability. The experimental results were verified by alloying the Fe-B-based glassy alloy with Si and alloying the Fe-B-Si-based glassy alloy with ETMs (Zr, Hf, Nb, or Ta) and rare-earth metals (Y, Ce, Pr, Nd, Sm, Gd, or Dy). The experimental results correspond well with theoretical analysis. This study provides a novel understanding of the local structure-property correlation and minor alloying beneficial effects on amorphous alloys.

Key wordsFe-based amorphous alloy    "cluster-plus-glue-atom" model    structure-property correlation    minor alloying mechanism    experimental verification
收稿日期: 2020-04-09     
ZTFLH:  TG139.8  
基金资助:国家重点研发计划项目(2016YFB1100103);江苏省自然科学基金青年基金项目(BK20180985);江苏省高等学校自然科学研究面上项目(18KJB430011)
作者简介: 耿遥祥,男,1986年生,副教授,博士
图1  非晶合金的“团簇+连接原子”局域结构模型
图2  非晶合金中团簇内部和团簇间原子关联作用及合金化原子在模型结构中的位置示意图
图3  不同元素之间的混合焓及各自的原子半径
图4  Fe-B和Fe-B-Si非晶合金的DSC曲线及非晶合金的晶化温度(Tx)随[SiyB3-yFe]Fe团簇式中Si含量(y)的变化
图5  直径(D)为1 mm的[Si-B2Fe8]Fe和[Si-B2Fe7.6RE0.4]Fe样品及非晶形成临界直径(Dc)样品[Si-B2Fe7.6ETM0.4]Fe的XRD谱
图6  [Si-B2Fe8]Fe、[Si-B2Fe7.6RE0.4]Fe和[Si-B2Fe7.6ETM0.4]Fe非晶条带样品的DSC曲线
Cluster formulaCompositionDcTgTxVickers hardness
(atomic fraction / %)mmKKHV
[B-B2Fe8]FeFe75B25<1.0-712-
[(B0.4Si0.6)-B2Fe8]Fe (y=0.6)Fe75B20Si5<1.0-825-
[(B0.2Si0.8)-B2Fe8]Fe (y=0.8)Fe75B18.33Si6.67<1.0-833-
[Si-B2Fe8]Fe (y=1.0)Fe75B16.67Si8.33<1.0-839-
[Si-B1.8Si0.2Fe8]Fe (y=1.2)Fe75B15Si10<1.0-838-
[Si-B1.6Si0.4Fe8]Fe (y=1.4)Fe75B13.33Si11.67<1.0-832-
[Si-B2Fe7.6Y0.4]Fe (RE=Y)Fe71.67B16.67Si8.33Y3.33<1.0-923-
[Si-B2Fe7.6Dy0.4]Fe (RE=Dy)Fe71.67B16.67Si8.33Dy3.33<1.0-924-
[Si-B2Fe7.6Ce0.4]Fe (RE=Ce)Fe71.67B16.67Si8.33Ce3.33<1.0-902-
[Si-B2Fe7.6Nd0.4]Fe (RE=Nd)Fe71.67B16.67Si8.33Nd3.33<1.0-917-
[Si-B2Fe7.6Pr0.4]Fe (RE=Pr)Fe71.67B16.67Si8.33Pr3.33<1.0-914-
[Si-B2Fe7.6Sm0.4]Fe (RE=Sm)Fe71.67B16.67Si8.33Sm3.33<1.0-898-
[Si-B2Fe7.6Gd0.4]Fe (RE=Gd)Fe71.67B16.67Si8.33Gd3.33<1.0-921-
Cluster formulaCompositionDcTgTxVickers hardness
(atomic fraction / %)mmKKHV
[Si-B2Fe7.8Zr0.2]Fe (ETM=Zr, z=0.2)Fe73.33B16.67Si8.33Zr1.672.08398731120±9
[Si-B2Fe7.7Zr0.3]Fe (ETM=Zr, z=0.3)Fe72.50B16.67Si8.33Zr2.502.58468821131±7
[Si-B2Fe7.6Zr0.4]Fe (ETM=Zr, z=0.4)Fe71.67B16.67Si8.33Zr3.332.58518881149±7
[Si-B2Fe7.5Zr0.5]Fe (ETM=Zr, z=0.5)Fe70.83B16.67Si8.33Zr4.172.08548911145±8
[Si-B2Fe7.4Zr0.6]Fe (ETM=Zr, z=0.6)Fe70B16.67Si8.33Zr51.58689031156±7
[Si-B2Fe7.3Zr0.7]Fe (ETM=Zr, z=0.7)Fe69.17B16.67Si8.33Zr5.831.58759091170±10
[Si-B2Fe7.2Zr0.8]Fe (ETM=Zr, z=0.8)Fe68.33B16.67Si8.33Zr6.671.08789181184±8
[Si-B2Fe7.1Zr0.9]Fe (ETM=Zr, z=0.9)Fe67.5B16.67Si8.33Zr7.51.08909221195±13
[Si-B2Fe7.0Zr1.0]Fe (ETM=Zr, z=1.0)Fe66.67B16.67Si8.33Zr8.33<1.08959251197±15
[Si-B2Fe7.8Hf0.2]Fe (ETM=Hf, z=0.2)Fe73.33B16.67Si8.33Hf1.671.08408721115±13
[Si-B2Fe7.7Hf0.3]Fe (ETM=Hf, z=0.3)Fe72.50B16.67Si8.33Hf2.502.58528851121±19
[Si-B2Fe7.6Hf0.4]Fe (ETM=Hf, z=0.4)Fe71.67B16.67Si8.33Hf3.332.08548871153±8
[Si-B2Fe7.5Hf0.5]Fe (ETM=Hf, z=0.5)Fe70.83B16.67Si8.33Hf4.171.58588931138±9
[Si-B2Fe7.4Hf0.6]Fe (ETM=Hf, z=0.6)Fe70B16.67Si8.33Hf51.08619011168±8
[Si-B2Fe7.3Hf0.7]Fe (ETM=Hf, z=0.7)Fe69.17B16.67Si8.33Hf5.831.08709081174±9
[Si-B2Fe7.2Hf0.8]Fe (ETM=Hf, z=0.8)Fe68.33B16.67Si8.33Hf6.67<1.0876911-
[Si-B2Fe7.1Hf0.9]Fe (ETM=Hf, z=0.9)Fe67.5B16.67Si8.33Hf7.5<1.0886918-
[Si-B2Fe7.8Nb0.2]Fe (ETM=Nb, z=0.2)Fe73.33B16.67Si8.33Nb1.671.0-8611087±12
[Si-B2Fe7.7Nb0.3]Fe (ETM=Nb, z=0.3)Fe72.5B16.67Si8.33Nb2.52.08358691090±1
[Si-B2Fe7.6Nb0.4]Fe (ETM=Nb, z=0.4)Fe71.67B16.67Si8.33Nb3.332.58438731108±11
[Si-B2Fe7.5Nb0.5]Fe (ETM=Nb, z=0.5)Fe70.83B16.67Si8.33Nb4.172.58458811113±4
[Si-B2Fe7.4Nb0.6]Fe (ETM=Nb, z=0.6)Fe70B16.67Si8.33Nb52.08538851126±9
[Si-B2Fe7.3Nb0.7]Fe (ETM=Nb, z=0.7)Fe69.17B16.67Si8.33Nb5.831.58548951150±13
[Si-B2Fe7.2Nb0.8]Fe (ETM=Nb, z=0.8)Fe68.33B16.67Si8.33Nb6.671.58569021172±20
[Si-B2Fe7.1Nb0.9]Fe (ETM=Nb, z=0.9)Fe67.5B16.67Si8.33Nb7.51.58629111173±25
[Si-B2Fe7.0Nb1.0]Fe (ETM=Nb, z=1.0)Fe66.67B16.67Si8.33Nb8.331.58759171188±28
[Si-B2Fe6.8Nb1.2]Fe (ETM=Nb, z=1.2)Fe65B16.67Si8.33Nb101.0889930-
[Si-B2Fe7.8Ta0.2]Fe (ETM=Ta, z=0.2)Fe73.33B16.67Si8.33Ta1.67<1.0-858-
[Si-B2Fe7.7Ta0.3]Fe (ETM=Ta, z=0.3)Fe72.5B16.67Si8.33Ta2.5<1.0-865-
[Si-B2Fe7.6Ta0.4]Fe (ETM=Ta, z=0.4)Fe71.67B16.67Si8.33Ta3.331.08438731117±6
[Si-B2Fe7.5Ta0.5]Fe (ETM=Ta, z=0.5)Fe70.83B16.67Si8.33Ta4.171.08508841130±10
[Si-B2Fe7.4Ta0.6]Fe (ETM=Ta, z=0.6)Fe70B16.67Si8.33Ta51.08568891143±10
[Si-B2Fe7.3Ta0.7]Fe (ETM=Ta, z=0.7)Fe69.16B16.67Si8.33Ta5.831.08568911154±11
[Si-B2Fe7.2Ta0.8]Fe (ETM=Ta, z=0.8)Fe68.33B16.67Si8.33Ta6.67<1.0859896-
[Si-B2Fe7.1Ta0.9]Fe (ETM=Ta, z=0.9)Fe67.5B16.67Si8.33Ta7.5<1.0863910-
[Si-B2Fe7.0Ta1.0]Fe (ETM=Ta, z=1.0)Fe66.67B16.67Si8.33Ta8.33<1.0874913-
表1  非晶合金的团簇式、化学成分、Dc、玻璃转变温度(Tg)、Tx和Vickers硬度
图7  Fe-B-Si、Fe-B-Si-ETM和Fe-B-Si-RE非晶合金团簇内部和团簇间原子的关联作用简化图
图8  [Si-B2Fe8-zETMz]Fe非晶合金的Tg、Tx和Vickers硬度随合金元素含量变化关系曲线
[1] Liu C T, White C L, Horton J A. Effect of boron on grain-boundaries in Ni3Al [J]. Acta Metall., 1985, 33: 213
[2] Nishizawa T. Thermodynamics of micro-alloying [J]. Mater. Trans., 2001, 42: 2027
[3] Greer A L. Grain refinement of alloys by inoculation of melts [J]. Phil. Trans. Roy. Soc. Lond., 2003, 361A: 479
[4] Wang W H. Roles of minor additions in formation and properties of bulk metallic glasses [J]. Prog. Mater. Sci., 2007, 52: 540
[5] Lu Z P, Liu C T. Role of minor alloying additions in formation of bulk metallic glasses: A review [J]. J. Mater. Sci., 2004, 39: 3965
[6] Xu D H, Duan G, Johnson W L. Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper [J]. Phys. Rev. Lett., 2004, 92: 245504
pmid: 15245096
[7] Ponnambalam V, Poon S J, Shiflet Gary J. Fe-based bulk metallic glasses with diameter thickness larger than one centimeter [J]. J. Mater. Res., 2004, 19: 1320
[8] Egami T. Magnetic amorphous alloys: Physics and technological applications [J]. Rep. Prog. Phys., 1984, 47: 1601
[9] Hasegawa R. Amorphous magnetic materials—A history [J]. J. Magn. Magn. Mater., 1991, 100: 1
[10] McHenry M E, Willard M A, Laughlin D E. Amorphous and nanocrystalline materials for applications as soft magnets [J]. Prog. Mater. Sci., 1999, 44: 291
[11] Suryanarayana C, Inoue A. Iron-based bulk metallic glasses [J]. Int. Mater. Rev., 2013, 58: 131
[12] Sadoc J F, Wagner C N J. Structure of Metallic Glasses [M]. Berlin, Heidelberg, New York, Tokyo: Springer-Verlag, 1983: 78
[13] Steeb S, Lamparter P. Structure of binary metallic glasses [J]. J. Non-Cryst. Solids, 1993, 156-158: 24
[14] Hasegawa R, Ray R. Iron-boron metallic glasses [J]. J. Appl. Phys., 1978, 49: 4174
[15] Sánchez F H, Zhang Y D, Budnick J I. Short-range order in a partially crystallized Fe0.86B0.14 amorphous alloy: A comparison between spin-echo NMR and Mössbauer-effect studies [J]. Phys. Rev., 1988, 38B: 8508
[16] Chien C L, Hasegawa R. Mössbauer study of glassy alloys (Fe-Mo)80B20 [J]. J. Appl. Phys., 1978, 49: 1721
[17] Polk D E. The structure of glassy metallic alloys [J]. Acta Metall., 1972, 20: 485
[18] Gu X J, Poon S J, Shiflet G J, et al. Ductility improvement of amorphous steels: Roles of shear modulus and electronic structure [J]. Acta Metall., 2008, 56: 88
[19] Xia J H, Qiang J B, Wang Y M, et al. Ternary bulk metallic glasses formed by minor alloying of Cu8Zr5 icosahedron [J]. Appl. Phys. Lett., 2006, 88: 101907
[20] Wang Y M, Wang Q, Zhao J J, et al. Ni-Ta binary bulk metallic glasses [J]. Scr. Mater., 2010, 63: 178
[21] Yuan L, Pang C, Wang Y M, et al. Understanding the Ni-Nb-Zr BMG composition from a binary eutectic Ni-Nb icosahedral cluster [J]. Intermetallics, 2010, 18: 1800
[22] Dong C, Wang Q, Qiang J B, et al. From clusters to phase diagrams: Composition rules of quasicrystals and bulk metallic glasses [J]. J. Phys., 2007, 40D: R273
[23] Wang Z R, Qiang J B, Wang Y M, et al. Composition design procedures of Ti-based bulk metallic glasses using the cluster-plus-glue-atom model [J]. Acta Mater., 2016, 111: 366
[24] Cheng Y Q, Ma E. Atomic-level structure and structure-property relationship in metallic glasses [J]. Prog. Mater. Sci., 2011, 56: 379
[25] Sheng H W, Luo W K, Alamgir F M, et al. Atomic packing and short-to-medium-range order in metallic glasses [J]. Nature, 2006, 439: 419
doi: 10.1038/nature04421 pmid: 16437105
[26] Stillinger F H. Relaxation and flow mechanisms in "fragile" glass-forming liquids [J]. J. Chem. Phys., 1988, 89: 6461
[27] Ediger M D. Spatially heterogeneous dynamics in supercooled liquids [J]. Annu. Rev. Phys. Chem., 2000, 51: 99
pmid: 11031277
[28] Tanaka H. Two-order-parameter model of the liquid-glass transition. II. Structural relaxation and dynamic heterogeneity [J]. J. Non-Cryst. Solids, 2005, 351: 3385
[29] Geng Y X, Wang Y M, Wang Z R, et al. Formation and structure-property correlation of new bulk Fe-B-Si-Hf metallic glasses [J]. Mater. Des., 2016, 106: 69
[30] Kelton K F. Crystal nucleation in liquids and glasses [J]. Solid State Phys., 1991, 45: 75
[31] Spaepen F. A structural model for the solid-liquid interface in monatomic systems [J]. Acta Metall., 1975, 23: 729
[32] Kauzmann W. The nature of the glassy state and the behavior of liquids at low temperatures [J]. Chem. Rev., 1948, 43: 219
[33] Schuh C A, Hufnagel T C, Ramamurty U. Mechanical behavior of amorphous alloys [J]. Acta Mater., 2007, 55: 4067
[34] Gao F M, He J L, Wu E D, et al. Hardness of covalent crystals [J]. Phys. Rev. Lett., 2003, 91: 015502
doi: 10.1103/PhysRevLett.91.015502 pmid: 12906547
[35] Wang W H. The elastic properties, elastic models and elastic perspectives of metallic glasses [J]. Prog. Mater. Sci., 2012, 57: 487
[36] Gaskell P H. Models for the structure of amorphous metals [A]. Beck H, Güntherodt H J.
[36] Glassy Metal II. Topics in Applied Physics [M]. Berlin, Heidelberg: Springer-Verlag, 1983: 5
[37] Hasegawa R, Ray R. Iron-boron metallic glasses [J]. J. Appl. Phys., 1978, 49: 4174
[38] Geng Y X, Wang Y M, Qiang J B, et al. Composition formulas of Fe-B binary amorphous alloys [J]. J. Non-Cryst. Solids, 2016, 432: 453
[39] Carini J P, Basak S, Nagel S R, et al. The thermoelectric power of the metallic glass Ca0.8Al0.2 [J]. Phys. Lett., 1981, 81A: 525
[40] de Boer F R, Boom R, Mattens W C M, et al. Cohesion in Metals [M]. Amsterdam: North-Holland Publishing Co., 1989: 217
[41] Luborsky F E, Reeve J, Davies H A, et al. Effect of Fe-B-Si composition on maximum thickness for casting amorphous metals [J]. IEEE Trans. Magn., 1982, 18: 1385
[42] Gale W F, Totemeier T C. Smithells Metals Reference Book [M]. Oxford: Butterworth-Heinemann, 1992: 108
[43] Geng Y X, Wang Y M, Qiang J B, et al. Composition design and optimization of Fe-B-Si-Nb bulk amorphous alloys [J]. Acta Metall. Sin., 2016, 52: 1459
[43] (耿遥祥, 王英敏, 羌建兵等. Fe-B-Si-Nb块体非晶合金的成分设计与优化 [J]. 金属学报, 2016, 52: 1459)
[44] Geng Y X, Wang Y M, Qiang J B, et al. Fe-B-Si-Zr soft magnetic bulk glassy alloys [J]. Intemetallics, 2015, 67: 138
[45] Geng Y X, Han K M, Wang Y M, et al. Composition design of Fe-B-Si-Ta bulk amorphous alloys based on cluster + glue atom model [J]. Acta Metall. Sin., 2015, 51: 1017
[45] (耿遥祥, 韩凯明, 王英敏等. 基于团簇+连接原子模型的Fe-B-Si-Ta块体非晶合金的成分设计 [J]. 金属学报, 2015, 51: 1017)
[46] Chang H W, Huang Y C, Chang C W, et al. Soft magnetic properties and glass formability of Y-Fe-B-M bulk metals (M=Al, Hf, Nb, Ta, and Ti) [J]. J. Alloys Compd., 2009, 472: 166
[47] Li J W, Estévez D, Jiang K M, et al. Electronic-structure origin of the glass-forming ability and magnetic properties in Fe-RE-B-Nb bulk metallic glasses [J]. J. Alloys Compd., 2014, 617: 332
doi: 10.1016/j.jallcom.2014.07.222
[48] Zhang W, Jia X J, Li Y H, et al. Effects of Mo addition on thermal stability and magnetic properties of a ferromagnetic Fe75P10C10B5 metallic glass [J]. J. Appl. Phys., 2014, 115: 17A768
[49] Lu Z P, Liu C T, Thompson J R, et al. Structural amorphous steels [J]. Phys. Rev. Lett., 2004, 92: 245503
doi: 10.1103/PhysRevLett.92.245503 pmid: 15245095
[50] Gao S F, Qiu J L, Yu P, et al. Fe-based bulk metallic glasses: Brittle or ductile? [J]. Appl. Phys. Lett., 2014, 105: 161901
doi: 10.1063/1.4899124
[51] Cheung T L, Shek C H. Thermal and mechanical properties of Cu-Zr-Al bulk metallic glasses [J]. J. Alloys Compd., 2007, 434-435: 71
doi: 10.1016/j.jallcom.2006.08.109
[52] Duan G, Lind M L, De Blauwe K, et al. Thermal and elastic properties of Cu-Zr-Be bulk metallic glass forming alloys [J]. Appl. Phys. Lett., 2007, 90: 211901
doi: 10.1063/1.2741050
[53] Zhang T, Men H, Pang S J, et al. Effects of a minor addition of Si and/or Sn on formation and mechanical properties of Cu-Zr-Ti bulk metallic glass [J]. Mater. Sci. Eng., 2007, A449-451: 295
[54] Li Y H, Zhang W, Dong C, et al. Formation and mechanical properties of Zr-Ni-Al glassy alloys with high glass-forming ability [J]. Intermetallics, 2010, 18: 1851
doi: 10.1016/j.intermet.2010.03.041
[1] 耿遥祥,张志杰,王英敏,羌建兵,董闯,汪海斌,特古斯. 高Fe含量Fe-B-Si-Hf块体非晶合金的结构-性能关联[J]. 金属学报, 2017, 53(3): 369-375.
[2] 吴泽宇 郭胜锋 李宁 柳林. Co对Fe--B--Y--Nb块体非晶合金玻璃形成能力及软磁性能的影响[J]. 金属学报, 2009, 45(2): 249-252.
[3] 徐民 易军 全明秀 王沿东 左良. Nb对非晶态Fe-Co-Nd-B合金的晶化动力学的影响[J]. 金属学报, 2009, 45(1): 91-96.
[4] 徐民; 孙羽; 全明秀; 王沿东; 左良 . Fe--Co--Nd--Nb--B非晶合金的形成和软磁性能[J]. 金属学报, 2007, 43(7): 699-704 .
[5] 王晓伟; 马继 . 低频脉冲磁场方法处理铁基非晶合金的内耗研究[J]. 金属学报, 2003, 39(11): 1215-1218 .
[6] 李健民;孙文声;全明秀;胡壮麒;王永忠;乔桂文. (Fe_(0.99)Mo_(0.01))_(78)Si_9B_(13)非晶合金的低温韧脆性研究[J]. 金属学报, 1995, 31(23): 493-498.
[7] 杨会生;熊小涛;徐祖雄;马如璋;涂国超;张家骥. Fe_(76.5)Cu_1Si_(13.5)B_9非晶合金晶化过程的X射线衍射研究[J]. 金属学报, 1992, 28(11): 75-80.
[8] 胡汉起;杨忠寿. 硼对铁基非晶材料抗H_2S腐蚀性能的影响[J]. 金属学报, 1989, 25(2): 146-148.
[9] 杨国斌;关志群;王双全;王润. 铁基非晶合金局部晶化过程中的矫顽力拐折现象[J]. 金属学报, 1988, 24(4): 362-364.