|
|
装甲防护陶瓷-金属叠层复合材料界面研究进展 |
赵宇宏1( ), 景舰辉1, 陈利文1, 徐芳泓2, 侯华1 |
1.中北大学 材料科学与工程学院 太原 030051 2.太原钢铁(集团)有限公司 先进不锈钢材料国家重点实验室 太原 030003 |
|
Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection |
ZHAO Yuhong1( ), JING Jianhui1, CHEN Liwen1, XU Fanghong2, HOU Hua1 |
1.School of Materials Science and Engineering, North University of China, Taiyuan 030051, China 2.State Key Laboratory of Advanced Stainless Steel Materials, Taiyuan Iron and Steel (Group) Co. Ltd. , Taiyuan 030003, China |
引用本文:
赵宇宏, 景舰辉, 陈利文, 徐芳泓, 侯华. 装甲防护陶瓷-金属叠层复合材料界面研究进展[J]. 金属学报, 2021, 57(9): 1107-1125.
Yuhong ZHAO,
Jianhui JING,
Liwen CHEN,
Fanghong XU,
Hua HOU.
Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection[J]. Acta Metall Sin, 2021, 57(9): 1107-1125.
1 |
Lee M, Yoo Y H. Analysis of ceramic/metal armour systems [J]. Int. J. Impact Eng., 2001, 25: 819
|
2 |
Zaera R, Sánchez-Gálvez V. Analytical modelling of normal and oblique ballistic impact on ceramic/metal lightweight armours [J]. Int. J. Impact Eng., 1998, 21: 133
|
3 |
Rowe R G, Skelly D W, Larsen M, et al. Microlaminated high temperature intermetallic composites [J]. Scr. Metall. Mater., 1994, 31: 1487
|
4 |
Wang D C. Preparation and characterization of laminated Al/A2O3 composites with nacre-inspired hierarchical complexity [D]. Harbin: Harbin Institute of Technology, 2017
|
4 |
王道畅. 仿贝壳珍珠层结构叠层Al/Al2O3复合材料制备及性能测试 [D]. 哈尔滨: 哈尔滨工业大学, 2017
|
5 |
Song H C, Liang Z Y, Zhang Z G. Gunship with ceramic/composite armor [J]. Aviat. Maint. Eng., 1994, (9): 9
|
5 |
宋焕成, 梁志勇, 张佐光. 武装直升机与陶瓷/复合材料装甲 [J]. 航空制造工程, 1994, (9): 9
|
6 |
Hu Y L, Jiang F. Development and current status of armor ceramics [J]. Ordn. Mater. Sci. Eng., 1996, 19(5): 37
|
6 |
胡玉龙, 蒋 凡. 装甲陶瓷的发展现状和趋势 [J]. 兵器材料科学与工程, 1996, 19(5): 37
|
7 |
Rashad M, Pan F S, Tang A T, et al. Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method [J]. Prog. Nat. Sci.: Mater. Int., 2014, 24: 101
|
8 |
Rashad M, Pan F S, Tang A T, et al. Development of magnesium-graphene nanoplatelets composite [J]. J. Compos. Mater., 2015, 49: 285
|
9 |
Cao Z, Wang X D, Li J L, et al. Reinforcement with graphene nanoflakes in titanium matrix composites [J]. J. Alloys Compd., 2017, 696: 498
|
10 |
Jiao F F, Liu M Y, Jiang F C, et al. Continuous carbon fiber reinforced Ti/Al3Ti metal-intermetallic laminate (MIL) composites fabricated using ultrasonic consolidation assisted hot pressing sintering [J]. Mater. Sci. Eng., 2019, A765: 138255
|
11 |
Tasdemirci A, Tunusoglu G, Güden M. The effect of the interlayer on the ballistic performance of ceramic/composite armors: Experimental and numerical study [J]. Int. J. Impact Eng., 2012, 44: 1
|
12 |
Gama B A, Bogetti T A, Fink B K, et al. Aluminum foam integral armor: A new dimension in armor design [J]. Compos. Struct., 2001, 52: 381
|
13 |
Shen Z Y, Huang G H, He L M, et al. Preparation and mechanical properties of large-side TiAl/Ti3Al microlaminated thin sheets [J]. J. Mater. Eng., 2018, 46(5): 72
|
13 |
申造宇, 黄光宏, 何利民等. 大尺寸TiAl/Ti3Al微叠层超薄板制备和力学性能 [J]. 材料工程, 2018, 46(5): 72
|
14 |
Wadley H N G, O'masta M R, Dharmasena K P, et al. Effect of core topology on projectile penetration in hybrid aluminum/alumina sandwich structures [J]. Int. J. Impact Eng., 2013, 62: 99
|
15 |
Sadanandan S, Hetherington J G. Characterisation of ceramic/steel and ceramic/aluminium armours subjected to oblique impact [J]. Int. J. Impact Eng., 1997, 19: 811
|
16 |
Yungwirth C J, O'connor J, Zakraysek A, et al. Explorations of hybrid sandwich panel concepts for projectile impact mitigation [J]. J. Am. Ceram. Soc., 2011, 94: s62
|
17 |
Übeyli M, Yıldırım R O, Ögel B. Investigation on the ballistic behavior of Al2O3/Al2024 laminated composites [J]. J. Mater. Process. Technol., 2008, 196: 356
|
18 |
Shirvanimoghaddam K, Khayyam H, Abdizadeh H, et al. Effect of B4C, TiB2 and ZrSiO4 ceramic particles on mechanical properties of aluminium matrix composites: Experimental investigation and predictive modelling [J]. Ceram. Int., 2016, 42: 6206
|
19 |
Prakash A, Rajasankar J, Anandavalli N, et al. Influence of adhesive thickness on high velocity impact performance of ceramic/metal composite targets [J]. Int. J. Adhes. Adhes., 2013, 41: 186
|
20 |
Medvedovski E. Ballistic performance of armour ceramics: Influence of design and structure. Part 1 [J]. Ceram. Int., 2010, 36: 2103
|
21 |
Medvedovski E. Ballistic performance of armour ceramics: Influence of design and structure. Part 2 [J]. Ceram. Int., 2010, 36: 2117
|
22 |
Li Y. Research progress on gradient metallic materials [J]. Mater. China, 2016, 35: 658
|
22 |
李 毅. 梯度结构金属材料研究进展 [J]. 中国材料进展, 2016, 35: 658
|
23 |
Li W K, Han B H, Zhao Z M. Research progress in ceramics armor materials [J]. Spec. Cast. Nonferrous Alloys, 2018, 38: 259
|
23 |
李维锴, 韩保红, 赵忠民. 装甲防护陶瓷材料的研究进展 [J]. 特种铸造及有色合金, 2018, 38: 259
|
24 |
Jiao L J, Li J. Application of ceramics-metal function gradient composite material in armor [J]. J. Sichuan Ordn., 2006, 27(4): 22
|
24 |
焦丽娟, 李 军. 陶瓷-金属功能梯度复合材料在装甲防护中的应用 [J]. 四川兵工学报, 2006, 27(4): 22
|
25 |
Chao Z L, Jiang L T, Chen G Q, et al. The microstructure and ballistic performance of B4C/AA2024 functionally graded composites with wide range B4C volume fraction [J]. Composites, 2019, 161B: 627
|
26 |
Yu H. Experimental study on penetration resistance of functionally graded materials [D]. Xi'an: Northwestern Polytechnical University, 2004
|
26 |
于 洪. 功能梯度材料抗侵彻性能试验研究 [D]. 西安: 西北工业大学, 2004
|
27 |
Medvedovski E. Lightweight ceramic composite armour system [J]. Adv. Appl. Ceram., 2006, 105: 241
|
28 |
Gao Y B, Zhang W, Yi C H, et al. Effects of adhesive layer on anti-penetration performance of ceramic/metal composite armour [J]. J. Vibrat. Shock, 2019, 38(13): 95
|
28 |
高玉波, 张 伟, 宜晨虹等. 黏结层对陶瓷/金属复合装甲抗弹性能的影响研究 [J]. 振动与冲击, 2019, 38(13): 95
|
29 |
Li Y, Zhao J P, Zeng G, et al. Ni/Ni3Al microlaminate composite produced by EB-PVD and the mechanical properties [J]. Mater. Lett., 2004, 58: 1629
|
30 |
Gao Y B, Zhang W, Xu P, et al. Influence of epoxy adhesive layer on impact performance of TiB2-B4C composites armor backed by aluminum plate [J]. Int. J. Impact Eng., 2018, 122: 60
|
31 |
Wu Y, Wang X D, Liu D, et al. Development and application analysis of ceramic composites armor for helicopter [J]. J. Aeron. Mater., 2019, 39(5): 34
|
31 |
武 岳, 王旭东, 刘 迪等. 直升机陶瓷复合装甲发展现状及新型材料应用前景 [J]. 航空材料学报, 2019, 39(5): 34
|
32 |
Fang L H, Zheng X Y, Ma L, et al. Armor protection development of tank & armored vehicle [J]. J. Sichuan Ordn., 2014, 35(2): 23
|
32 |
房凌晖, 郑翔玉, 马 丽等. 坦克装甲车辆装甲防护发展研究 [J]. 四川兵工学报, 2014, 35(2): 23
|
33 |
Signetti S, Pugno N M. Evidence of optimal interfaces in bio-inspired ceramic-composite panels for superior ballistic protection [J]. J. Eur. Ceram. Soc., 2014, 34: 2823
|
34 |
Wu C D, Shi R Y, Zhang J, et al. Synthesis of functionally graded AA7075-B4C composite with multi-level gradient structure [J]. Ceram. Int., 2019, 45: 7761
|
35 |
Wang Y. The fabrication of iron and nickel-based metal-intermetallic-laminate composites and study on microstructure and properties of intermetallic layer [D]. Dalian: Dalian University of Technology, 2016
|
35 |
王 宇. 铁基及镍基金属/金属间化合物微叠层复合材料制备与化合物层组织性能研究 [D]. 大连: 大连理工大学, 2016
|
36 |
Saravanan R A, Surappa M K. Fabrication and characterisation of pure magnesium-30 vol.% SiCP particle composite [J]. Mater. Sci. Eng., 2000, A276: 108
|
37 |
Wu C, Li Y K, Wang Z. Evolution and mechanism of crack propagation method of interface in laminated Ti/Al2O3 composite [J]. J. Alloys Compd., 2016, 665: 37
|
38 |
Li Y W, Xiao L R, Zhao X J, et al. Preparation, microstructure and properties of (SiCp/Cu)-copper foil laminated composites [J]. Acta Mater. Compos. Sin., 2018, 35: 896
|
38 |
李雨蔚, 肖来荣, 赵小军等. (SiCp/Cu)-铜箔叠层复合材料的制备与组织性能 [J]. 复合材料学报, 2018, 35: 896
|
39 |
Jin Q, Ren X P, Li S X, et al. Effect of SiC fiber reinforcement on structure properties of laminated composite [J]. J. Plast. Eng., 2019, 26(5): 166
|
39 |
金 旗, 任学平, 李殊霞等. SiC纤维增强体对叠层复合材料结构性能的影响 [J]. 塑性工程学报, 2019, 26(5): 166
|
40 |
Han Y Q, Lin C F, Han X X, et al. Fabrication, interfacial characterization and mechanical properties of continuous Al2O3 ceramic fiber reinforced Ti/Al3Ti metal-intermetallic laminated (CCFR-MIL) composite [J]. Mater. Sci. Eng., 2017, A688: 338
|
41 |
Chen S, Zhang Z M, Zhang L. Review on dynamic fracture of ceramics materials in armor applications [J]. Spec. Cast. Nonferrous Alloys, 2016, 36: 401
|
41 |
陈 硕, 赵忠民, 张 龙. 陶瓷装甲材料动态力学研究进展 [J]. 特种铸造及有色合金, 2016, 36: 401
|
42 |
de Oliveira Braga F, Lopes P H L M, Oliveira M S, et al. Thickness assessment and statistical optimization of a 3-layered armor system with ceramic front and curaua fabric composite/aluminum alloy backing [J]. Composites, 2019, 166B: 48
|
43 |
Li L, Zhu Z C, Zhou D J. Application of finite element analysis in development of metal clad materials [J]. Southern Met., 2015, (6): 1
|
43 |
李 龙, 祝志超, 周德敬. 有限元分析在金属层状复合材料开发中的应用 [J]. 南方金属, 2015, (6): 1
|
44 |
Zhang R, Han B, Li L, et al. Influence of prestress on ballistic performance of bi-layer ceramic composite armors: Experiments and simulations [J]. Compos. Struct., 2019, 227: 111258
|
45 |
Zhang Z, Zhou J, Zhou J, et al. Research progress on preparation technology and failure mechanism of metal/ceramic laminated composites [J]. J. Aeron. Mater., 2020, 40(6): 33
|
45 |
张 振, 周 玖, 周 婕等. 金属陶瓷层状复合材料制备工艺与失效机制研究进展 [J]. 航空材料学报, 2020, 40(6): 33
|
46 |
Heuzeroth F, Fritzsche J, Peuker U A. Wetting and its influence on the filtration ability of ceramic foam filters [J]. Particuology, 2015, 18: 50
|
47 |
Bao S, Syvertsen M, Kvithyld A, et al. Wetting behavior of aluminium and filtration with Al2O3 and SiC ceramic foam filters [J]. Trans. Nonferrous Met Soc. China, 2014, 24: 3922
|
48 |
Chaklader A C D, Armstrong A M, Misra S K. Interface reactions between metals and ceramics: IV, Wetting of sapphire by liquid copper-oxygen alloys [J]. J. Am. Ceram. Soc., 1968, 51: 630
|
49 |
Mihailovic M, Volkov-Husović T, Raic K. Micro-and nano-scale wetting of reactive metal at metal/ceramic interface [J]. Adv. Sci. Technol., 2006, 45: 1526
|
50 |
Zhao J Z, Gao J Q, Jin Z H. Preparation of three- dimensional structure silicon carbide reinforced aluminum matrix composites [J]. Ordn. Mater. Sci. Eng., 2004, 27(6): 11
|
50 |
赵敬忠, 高积强, 金志浩. 三维碳化硅结构增强铝基复合材料的制备 [J]. 兵器材料科学与工程, 2004, 27(6): 11
|
51 |
Liu L X. Wettability of molten Ni-(Cr, W) alloys on alumina ceramic substrate [D]. Chongqing: Chongqing University of Technology, 2009
|
51 |
刘兰霄. 熔融Ni-(Cr, W)合金与Al2O3陶瓷的润湿性研究 [D]. 重庆: 重庆理工大学, 2009
|
52 |
Wang W X. Study on interfacial wettability and mechanical properties of Al2O3/Cu composites [D]. Xi'an: Xi'anUniversity of Technology, 2019
|
52 |
王文祥. Al2O3/Cu复合材料的界面润湿性及其力学性能研究 [D]. 西安: 西安理工大学, 2019
|
53 |
Chen S, Zhao Z M, Huang X G, et al. Interfacial microstructure and mechanical properties of laminated composites of TiB2-based ceramic and 42CrMo alloy steel [J]. Mater. Sci. Eng., 2016, A674: 335
|
54 |
Cui X P, Fan G H, Geng L, et al. Influence of raw material selection and fabrication parameters on microstructure and properties of micro-laminated TiB2-TiAl composite sheets [J]. Mater. Sci. Eng., 2014, A589: 83
|
55 |
Monazzah A H, Pouraliakbar H, Jandaghi M R, et al. Influence of interfacial adhesion on the damage tolerance of Al6061/SiCp laminated composites [J]. Ceram. Int., 2017, 43: 2632
|
56 |
Zhang H, Yu J D, Pei X Y, et al. An overview of phase field approach to fracture [J]. Chin. J. High. Pressure Phys., 2019, 33(3): 030109
|
56 |
张 豪, 于继东, 裴晓阳等. 相场断裂方法发展概况 [J]. 高压物理学报, 2019, 33(3): 030109
|
57 |
Hansen-Dörr A C, de Borst R, Hennig P, et al. Phase-field modelling of interface failure in brittle materials [J]. Comput. Methods Appl. Mech. Eng., 2019, 346: 25
|
58 |
Roy S, Butz B, Wanner A. Damage evolution and domain-level anisotropy in metal/ceramic composites exhibiting lamellar microstructures [J]. Acta Mater., 2010, 58: 2300
|
59 |
Bai Y H, Zhang B X, Du H L, et al. Efficient multiscale strategy for toughening HfB2 ceramics: A heterogeneous ceramic-metal layered architecture [J]. J. Am. Ceram. Soc., 2021, 104: 1841
|
60 |
Hu Z J, Shen P, Jiang Q C. Developing high-performance laminated Cu/TiC composites through melt infiltration of Ni-doped freeze-cast preforms [J]. Ceram. Int., 2019, 45: 11686
|
61 |
Guo H J, Zhao Y H, Sun Y Y, et al. Phase field crystal study of grain boundary structure and annihilation mechanism in low-angle grain boundary [J]. Superlattices Microstruct., 2019, 129: 163
|
62 |
Zhao Y H, Zhang B, Hou H, et al. Phase-field simulation for the evolution of solid/liquid interface front in directional solidification process [J]. J. Mater. Sci. Technol., 2019, 35: 1044
|
63 |
Sun Y Y, Zhao Y H, Zhao B J, et al. Multi-component phase-field simulation of microstructural evolution and elemental distribution in Fe-Cu-Mn-Ni-Al alloy [J]. Calphad, 2020, 69: 101759
|
64 |
Yang Y B, Zhao Y H, Tian X L, et al. Microscopic phase-field simulation for precipitation process of Ni60Al20V20 medium entropy alloy [J]. Acta Phys. Sin., 2020, 69(14): 140201
|
64 |
杨一波, 赵宇宏, 田晓林等. Ni60Al20V20中熵合金沉淀过程微扩散相场法模拟 [J]. 物理学报, 2020, 69(14): 140201
|
65 |
Griffith A A. The phenomena of rupture and flow in solids [J]. Philos. Trans. R. Soc., 1921, 221A: 163
|
66 |
Francfort G A, Marigo J J. Revisiting brittle fracture as an energy minimization problem [J]. J. Mech. Phys. Solids, 1998, 46: 1319
|
67 |
Bourdin B, Francfort G A, Marigo J J. Numerical experiments in revisited brittle fracture [J]. J. Mech. Phys. Solids, 2000, 48: 797
|
68 |
Wilson Z A, Borden M J, Landis C M. A phase-field model for fracture in piezoelectric ceramics [J]. Int. J. Fract., 2013, 183: 135
|
69 |
Ziaei-Rad V, Shen L, Jiang J H, et al. Identifying the crack path for the phase field approach to fracture with non-maximum suppression [J]. Comput. Methods Appl. Mech. Eng., 2016, 312: 304
|
70 |
Kuhn C, Müller R. A continuum phase field model for fracture [J]. Eng. Fract. Mech., 2010, 77: 3625
|
71 |
Duda F P, Ciarbonetti A, Sánchez P J, et al. A phase-field/gradient damage model for brittle fracture in elastic-plastic solids [J]. Int. J. Plast., 2015, 65: 269
|
72 |
Ambati M, Gerasimov T, De Lorenzis L. Phase-field modeling of ductile fracture [J]. Comput. Mech., 2015, 55: 1017
|
73 |
Liu Y Y C, Weng K X, Shen Y X. A manifold learning approach to accelerate phase field fracture simulations in the representative volume element [J]. SN Appl. Sci., 2020, 2: 1682
|
74 |
Russ J, Slesarenko V, Rudykh S, et al. Rupture of 3D-printed hyperelastic composites: Experiments and phase field fracture modeling [J]. J. Mech. Phys. Solids, 2020, 140: 103941
|
75 |
Li P F, Yvonnet J, Combescure C. An extension of the phase field method to model interactions between interfacial damage and brittle fracture in elastoplastic composites [J]. Int. J. Mech. Sci., 2020, 179: 105633
|
76 |
Dean A, Reinoso J, Jha N K, et al. A phase field approach for ductile fracture of short fibre reinforced composites [J]. Theor. Appl. Fract. Mech., 2020, 106: 102495
|
77 |
Hirshikesh, Pramod A L N, Annabattula R K, et al. Adaptive phase-field modeling of brittle fracture using the scaled boundary finite element method [J]. Comput. Methods Appl. Mech. Eng., 2019, 355: 284
|
78 |
Wu J, McAuliffe C, Waisman H, et al. Stochastic analysis of polymer composites rupture at large deformations modeled by a phase field method [J]. Comput. Methods Appl. Mech. Eng., 2016, 312: 596
|
79 |
Van Do T, Doan D H, Duc N D, et al. Phase-field thermal buckling analysis for cracked functionally graded composite plates considering neutral surface [J]. Compos. Struct., 2017, 182: 542
|
80 |
Carlsson J, Isaksson P. Dynamic crack propagation in wood fibre composites analysed by high speed photography and a dynamic phase field model [J]. Int. J. Solids Struct., 2018, 144-145: 78
|
81 |
Khaderi S N, Murali P, Ahluwalia R. Failure and toughness of bio-inspired composites: Insights from phase field modelling [J]. Comput. Mater. Sci., 2014, 95: 1
|
82 |
Paggi M, Reinoso J. Revisiting the problem of a crack impinging on an interface: A modeling framework for the interaction between the phase field approach for brittle fracture and the interface cohesive zone model [J]. Comput. Methods Appl. Mech. Eng., 2017, 321: 145
|
83 |
Zhang Z, Suo Z G. Split singularities and the competition between crack penetration and debond at a bimaterial interface [J]. Int. J. Solids Struct., 2007, 44: 4559
|
84 |
Zhou Y S, Liang S, Wang D P, et al. Study on bulletpro of performance of ceramic/UHMWPE laminate/damping material composite target [J]. Compos. Sci. Eng., 2021, (4): 66
|
84 |
周越松, 梁 森, 王得盼等. 陶瓷/UHMWPE层合板/阻尼材料复合靶板防弹性能研究 [J]. 复合材料科学与工程, 2021, (4): 66
|
85 |
Zhang L. Interface and high strain rate deformation behavior of layered B4C/Al composites [D]. Jinan: University of Jinan, 2020
|
85 |
张 柳. 层状B4C/Al复合材料的界面研究与高应变速率变形行为 [D]. 济南: 济南大学, 2020
|
86 |
Liu Y Y. The design and toughing mechanism research of heterogeneous modulus laminated boron carbide composites [D]. Harbin: Harbin Engineering University, 2012
|
86 |
刘莹莹. 异质模量层状碳化硼复合材料的设计及韧化机制研究 [D]. 哈尔滨: 哈尔滨工程大学, 2012
|
87 |
Yamamoto S, Sato K, Koseki H. A study on lateral impact of Timoshenko beam [J]. Comput. Mech., 1990, 6: 101
|
88 |
Liu B X, Huang L J, Geng L, et al. Microstructure and tensile behavior of novel laminated Ti-TiBw/Ti composites by reaction hot pressing [J]. Mater. Sci. Eng., 2013, A583: 182
|
89 |
Maiti D K, Sinha P K. Bending, free vibration and impact response of thick laminated composite plates [J]. Comput. Struct., 1996, 59: 115
|
90 |
Singh B N, Yadav D, Iyengar N G R. Natural frequencies of composite plates with random material properties using higher-order shear deformation theory [J]. Int. J. Mech. Sci., 2001, 43: 2193
|
91 |
Messina A, Soldatos K P. A general vibration model of angle-ply laminated plates that accounts for the continuity of interlaminar stresses [J]. Int. J. Solids Struct., 2002, 39: 617
|
92 |
Zeng D, Fang D N. Numerical analysis of fracture behavior of laminated ceramic in three-point bending [J]. J. Basic Sci. Eng., 2000, 8: 398
|
92 |
曾 东, 方岱宁. 用界面元分析层状陶瓷的三点弯曲断裂性能 [J]. 应用基础与工程科学学报, 2000, 8: 398
|
93 |
Huang Y, Wang C A. Multiphase Composite Ceramics with High Performance [M]. Beijing: Tsinghua University Press, 2008: 1
|
93 |
黄 勇, 汪长安. 高性能多相复合陶瓷 [M]. 北京: 清华大学出版社, 2008: 1
|
94 |
Yu Y H, Wang Y B, Tan H N, et al. Elastic modulus, Poisson ratio of ZA35/TiC and dynamic performance of lts structural parts [J]. Mater. Heat Treat., 2012, 41(16): 40
|
94 |
于英华, 王益博, 谈海南等. ZA35/TiC合金弹性模量、泊松比及其结构件动态性能研究 [J]. 热加工工艺, 2012, 41(16): 40
|
95 |
Luo D J, Wang Y W, Wang F C, et al. The influence of metal cover plates on ballistic performance of silicon carbide subjected to large-scale tungsten projectile [J]. Mater. Des., 2020, 191: 108659
|
96 |
Pang Z J. Study of efficient meshfree methods for large deformation analysis [D]. Dalian: Dalian University of Technology, 2018
|
96 |
庞志佳. 大变形分析的高效无网格法研究 [D]. 大连: 大连理工大学, 2018
|
97 |
Pang M H, Wang Z K, Jiao H W. The contrastand analysis of SPH method and FEM method [J]. Mach. Des. Manuf., 2008, (2): 32
|
97 |
逄明华, 王占奎, 焦红伟. 无网格法中SPH方法和有限元方法的对比分析 [J]. 机械设计与制造, 2008, (2): 32
|
98 |
Seo H D, Park H J, Kim J I, et al. The particle-attached element interpolation for density correction in smoothed particle hydrodynamics [J]. Adv. Eng. Soft., 2021, 154: 102972
|
99 |
Lucy L B. A numerical approach to the testing of the fission hypothesis [J]. Astron. J., 1977, 8: 1013
|
100 |
Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods [J]. Int. J. Numer. Methods Eng., 1994, 37: 229
|
101 |
Atluri S N, Zhu T. A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics [J]. Comput. Mech., 1998, 22: 117
|
102 |
Atluri S N, Kim H G, Cho J Y. A critical assessment of the truly Meshless Local Petrov-Galerkin (MLPG), and Local Boundary Integral Equation (LBIE) methods [J]. Comput. Mech., 1999, 24: 348
|
103 |
Wendland H. Meshless Galerkin methods using radial basis functions [J]. Math. Comp., 1999, 68: 1521
|
104 |
Hao S, Park H S, Liu W K. Moving particle finite element method [J]. Int. J. Numer. Methods Eng., 2002, 53: 1937
|
105 |
Liu W K, Han W M, Lu H S, et al. Reproducing kernel element method. Part I: Theoretical formulation [J]. Comput. Methods Appl. Mech. Eng., 2004, 193: 933
|
106 |
Sigalotti L D G, Rendón O, Klapp J, et al. A new insight into the consistency of the SPH interpolation formula [J]. Appl. Math. Comput., 2019, 356: 50
|
107 |
Li B, Habbal F, Ortiz M. Optimal transportation meshfree approximation schemes for fluid and plastic flows [J]. Int. J. Numer. Methods Eng., 2010, 83: 1541
|
108 |
Ma T B, Su X, Hao L. Numerical simulation of hypervelocity impact based on the optimal transportation meshfree method [J]. Trans. Beijing Inst. Technol., 2020, 40: 617
|
108 |
马天宝, 粟 鑫, 郝 莉. 基于OTM方法的超高速碰撞问题数值模拟 [J]. 北京理工大学学报, 2020, 40: 617
|
109 |
Zhang T L, Ma T B, Hao L. Parallel research on numerical simulation of hypervelocity impact based on pOTM method [J]. J. Ordn. Equip. Eng., 2021, 42(1): 144
|
109 |
张天龙, 马天宝, 郝 莉. 基于pOTM方法的超高速碰撞并行数值模拟研究 [J]. 兵器装备工程学报, 2021, 42(1): 144
|
110 |
Zhu M L. A comparative study of three mesh-free methods: Smoothed particle hydrodynamics, dissipative particle dynamics and smoothed dissipative particle dynamics [D]. Jilin: University of Jilin, 2020
|
110 |
朱曼琳. 三种无网格法的对比研究——光滑粒子动力学、耗散粒子动力学和光滑耗散粒子动力学 [D]. 吉林: 吉林大学, 2020
|
111 |
Li G A. Deformation behaviors and microstructure change of several metals under high velocity impact conditions [D]. Harbin: Harbin Institute of Technology, 2005
|
111 |
李国爱. 高速撞击条件下几种金属材料的变形及组织演变行为 [D]. 哈尔滨: 哈尔滨工业大学, 2005
|
112 |
Yang Y, Li X J, Zhu D M, et al. Research development of materials damage effect under hypervelocity impact [J]. Ordn. Mater. Sci. Eng., 2014, 37(5): 133
|
112 |
杨 益, 李晓军, 朱大明等. 超高速碰撞材料毁伤效应研究进展 [J]. 兵器材料科学与工程, 2014, 37(5): 133
|
113 |
Dong H P, Guo F, Huang W J, et al. Shear banding behavior of AA2099 Al-Li alloy in asymmetrical rolling and its effect on recrystallization in subsequent annealing [J]. Mater. Charac., 2021, 177: 111155
|
114 |
Dong E T. A first-principles study of metal-ceramic interfacial bonding [D]. Jilin: Jilin University, 2013
|
114 |
董二婷. 金属-陶瓷界面结合的第一原理研究 [D]. 吉林: 吉林大学, 2013
|
115 |
Fan R. A first-principles investigation on the interfacial bonding properties of ceramic/metal composites [D]. Shanghai: Shanghai Jiaotong University, 2019
|
115 |
范 睿. 陶瓷/金属复合材料界面结合性能的第一性原理研究 [D]. 上海: 上海交通大学, 2019
|
116 |
Freeman A J, Li C, Fu C L. Energetics, bonding mechanism and electronic structure of metal/ceramic interfaces [A]. Metal-Ceramic Interfaces [M]. Oxford: Pergamon, 1990: 2
|
117 |
Rao F Y, Wu R Q, Freeman A J. Structure and bonding at metal-ceramic interfaces: Ag/CdO(001) [J]. Phys. Rev., 1995, 51B: 10052
|
118 |
Li C, Freeman A J. Giant monolayer magnetization of Fe on MgO: A nearly ideal two-dimensional magnetic system [J]. Phys. Rev., 1991, 43B: 780
|
119 |
Wu R Q, Freeman A J. Predicted c(2 × 2) buckling reconstruction of monolayer Mn on Fe(001) and its importance to the interfacial magnetic ordering [J]. Phys. Rev., 1995, 51B: 17131
|
120 |
Smith J R, Hong T, Srolovitz D J. Metal-ceramic adhesion and the harris functional [J]. Phys. Rev. Lett., 1994, 72: 4021
|
121 |
Hong T, Smith J R, Srolovitz D J. Metal/ceramic adhesion: A first principles study of MgO/Al and MgO/Ag [J]. J. Adhes. Sci. Technol., 1994, 8: 837
|
122 |
Hong T, Smith J R, Srolovitz D J. Theory of metal—Ceramic adhesion [J]. Acta Metall. Mater., 1995, 43: 2721
|
123 |
Hong T, Smith J R, Srolovitz D J. Impurity effects on adhesion: Nb, C, O, B, and S at a Mo/MoSi2 interface [J]. Phys. Rev., 1993, 47B: 13615
|
124 |
Hong T, Smith J R, Srolovitz D J. Impurity effects on adhesion [J]. Phys. Rev. Lett., 1993, 70: 615
|
125 |
Zhukovskii Y F, Kotomin E A, Jacobs P W M, et al. Ab initio modeling of metal adhesion on oxide surfaces with defects [J]. Phys. Rev. Lett., 2000, 84: 1256
|
126 |
Matsunaka D, Shibutani Y. Effects of oxygen vacancy on adhesion of incoherent metal/oxide interface by first-principles calculations [J]. Surf. Sci., 2010, 604: 196
|
127 |
Benedek R, Alavi A, Seidman D N, et al. First principles simulation of a ceramic/metal interface with misfit [J]. Phys. Rev. Lett., 2000, 84: 3362
|
128 |
Long Y, Chen N X, Zhang W Q. Pair potentials for a metal-ceramic interface by inversion of adhesive energy [J]. J. Phys.: Condens. Matter, 2005, 17: 2045
|
129 |
Liu L M, Wang S Q, Ye H Q. Adhesion and bonding of the Al/TiC interface [J]. Surf. Sci., 2004, 550: 46
|
130 |
Dudiy S V, Lundqvist B I. Wetting of TiC and TiN by metals [J]. Phys. Rev., 2004, 69B: 125421
|
131 |
Deng C, Xu B, Wu P, et al. Stability of the Al/TiB2 interface and doping effects of Mg/Si [J]. Appl. Surf. Sci., 2017, 425: 639
|
132 |
Rao L X, Liu H, Liu S, et al. Interface relationship between TiN and Ti substrate by first-principles calculation [J]. Comput. Mater. Sci., 2018, 155: 36
|
133 |
Liu L M, Wang S Q, Ye H Q. Adhesion of metal-carbide/nitride interfaces: Al/TiC and Al/TiN [J]. J. Phys.: Condens. Matter, 2003, 15: 8103
|
134 |
Li H T, Chen L F, Yuan X, et al. Interfacial stoichiometry and adhesion at metal/α-Al2O3 interfaces [J]. J. Am. Ceram. Soc., 2011, 94: s154
|
135 |
Yang J, Ye Z, Huang J H, et al. First-principles calculations on wetting interface between Ag-Cu-Ti filler metal and SiC ceramic: Ag (111)/SiC (111) interface and Ag (111)/TiC (111) interface [J]. Appl. Surf. Sci., 2018, 462: 55
|
136 |
Liu B B, Yang J F. Mg on adhesion of Al(111)/3C-SiC(111) interfaces from first principles study [J]. J. Alloys Compd., 2019, 791: 530
|
137 |
Guo X Y, Zhang Y, Jung Y G, et al. Ideal tensile strength and shear strength of ZrO2(111)/Ni(111) ceramic-metal Interface: A first principle study [J]. Mater. Des., 2016, 112: 254
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|