Please wait a minute...
金属学报  2022, Vol. 58 Issue (8): 1055-1064    DOI: 10.11900/0412.1961.2021.00030
  研究论文 本期目录 | 过刊浏览 |
CrMoTi中熵合金的性能及其原位合金化增材制造
刘广1,2, 陈鹏1,3, 姚锡禹1, 陈朴1, 刘星辰1, 刘朝阳4, 严明1()
1.南方科技大学 材料科学与工程系 深圳 518055
2.哈尔滨工业大学 材料科学与工程学院 哈尔滨 150001
3.School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, United Kingdom
4.南方科技大学 机械与能源工程系 深圳 518055
Properties of CrMoTi Medimum-Entropy Alloy and Its In Situ Alloying Additive Manufacturing
LIU Guang1,2, CHEN Peng1,3, YAO Xiyu1, CHEN Pu1, LIU Xingchen1, LIU Chaoyang4, YAN Ming1()
1.Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
2.School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
3.School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, United Kingdom
4.Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
引用本文:

刘广, 陈鹏, 姚锡禹, 陈朴, 刘星辰, 刘朝阳, 严明. CrMoTi中熵合金的性能及其原位合金化增材制造[J]. 金属学报, 2022, 58(8): 1055-1064.
Guang LIU, Peng CHEN, Xiyu YAO, Pu CHEN, Xingchen LIU, Chaoyang LIU, Ming YAN. Properties of CrMoTi Medimum-Entropy Alloy and Its In Situ Alloying Additive Manufacturing[J]. Acta Metall Sin, 2022, 58(8): 1055-1064.

全文: PDF(2446 KB)   HTML
摘要: 

以新型模具材料为应用背景,首先从多主元合金设计的角度,预测了CrMoTi中熵合金成分,并在实验中验证了其单相bcc结构。对CrMoTi中熵合金的硬度和热学性能进行了测试。结果表明,电弧熔炼样品在室温下硬度为520.6 HV0.3,在600℃时硬度为356.0 HV0.3;在室温下比热容为371 J/(kg·K),热导率为14.0 W/(m·K)。随后以金属元素粉为原材料,对比研究了直接激光沉积(DLD)和选区激光熔化(SLM) 2种增材制造技术在原位合金化成型CrMoTi中熵合金的加工适性。其中DLD样品在打印态密度最高达7.46 g/cm3,硬度达到634.6 HV0.3。SLM的原位合金化加工适性相对较差,样品密度最高为7.27 g/cm3,硬度为605.9 HV0.3,且在其内部残留有未熔Mo粉。相比较而言,在作为模具的性能方面,CrMoTi合金表现出略优于H13钢的硬度和高温热导率。在原位合金化方面,CrMoTi合金的原料包含了熔沸点差异较大的金属元素,且形成相为硬脆bcc结构相,对增材制造技术而言有较大的加工难度,而DLD技术相对SLM表现出更好的原位合金化加工适性。

关键词 中熵合金增材制造原位合金化直接激光沉积选区激光熔化热学性能    
Abstract

This study verifies the body-centered cubic (bcc) formability of CrMoTi medium-entropy alloy (MEA) as a potential mold material via theoretical calculations based on the concepts of multiprincipal element alloys and practical experiments employing arc melting and additive manufacturing (AM) techniques. The hardness and thermal properties of arc-melted CrMoTi MEA were tested at room and elevated temperatures. At room temperature, the alloy possesses a hardness of 520.6 HV0.3, thermal capacity of 371 J/(kg·K), and heat conductivity of 14.0 W/(m·K). Its hardness drops to 356.0 HV0.3 at 600oC, and its thermal capacity and heat conductivity increase to 446 J/(kg·K) and 28.4 W/(m·K), respectively, at 709oC, exhibiting the characteristic of semimetals. AM techniques are efficient for fabricating highly customized molds and have been widely used. Moreover, in situ alloying can further improve the compositional flexibility in the AM process. The in situ alloying printability of two AM techniques, i.e., direct laser deposition (DLD) and selective laser melting (SLM), was investigated using a blend of elemental powders. The best densification within the AM approaches (7.46 g/cm3) is achieved using DLD, and the microhardness of DLDed samples reaches 634.6 HV0.3. Conversely, the printability of SLM is relatively restricted. The optimal density and microhardness of the SLMed sample are 7.27 g/cm3 and 605.9 HV0.3, respectively, which are lower than those of the DLDed samples. In the DLDed samples, the large melt pool can homogenize most elements but with a Cr burning loss. Mo melts insufficiently during the SLM process and remains a partially melted powder in as-built samples. Moreover, cracking is already inevitable in SLMed samples, indicating that homogenization can hardly be improved by applying excessive energy input. As a brittle bcc alloy, its matrix tends to fail under the thermal stress of the heat accumulation in the AM process. Furthermore, the phase transformation in a small melt pool also intrinsically harms printability for in situ alloying studies through AM. Results from this study reveal that DLD possesses advantages over SLM for the in situ alloying of brittle materials like CrMoTi MEA. Combining elements with adequate overlapping of the liquid zone could be essential for superior printability of AM in situ alloying, especially with a high ratio of introduced elements.

Key wordsmedium-entropy alloy    additive manufacturing    in situ alloying    direct laser deposition    selective laser melting    thermal property
收稿日期: 2021-01-18     
ZTFLH:  TG144.3  
基金资助:广东省重点领域研发计划项目(2019B010943001);深圳市科创委学科布局项目(JCYJ20180504165824643);深圳市科创委学科布局项目(JCYJ-20170817111811303)
作者简介: 刘 广,男,1996年生,硕士
ElementArTm / KTb / Kr / nmVECκ / (W·m-1·K-1)
Cr51.99218029450.128693.9
Mo95.95289649120.1396138.0
Ti47.87194135600.147421.9
表1  Cr、Mo和Ti元素的物理性质[13]
PowderMass fraction of element / %d / µm
CNOH
Cr0.00270.09120.0366-40-150
Mo0.00270.02000.1390-30-100
Ti0.00500.00800.06870.003140-150
表2  增材制造原料粉体的C、N、O、H含量和粒径分布
图1  直接激光沉积(DLD)使用的混合元素粉末的SEM-EDS像
图2  DLD混合粉末的XRD谱
图3  通过电弧熔炼、DLD和选区激光熔化(SLM)成型的CrMoTi中熵合金XRD谱
图4  电弧熔炼制备CrMoTi中熵合金的EBSD像
图5  不同温度下电弧熔炼CrMoTi中熵合金的Vickers硬度
图6  不同温度下CrMoTi中熵合金的比热容(cp )与热导率(κ)
图7  增材制造原位合金化CrMoTi中熵合金成型效果
图8  SLM加工CrMoTi中熵合金试样截面形貌的SEM像
图9  DLD原位合金化CrMoTi中熵合金的密度-激光功率(ρ-P)曲线
图10  SLM原位合金化CrMoTi中熵合金的密度-体能量密度(ρ-VED)曲线
图11  增材制造原位合金化DLD1350W和SLM167J样品的SEM像和EDS分析
SampleCrMoTi
Nominal33.333.333.3
Arc melting31.232.836.0
DLD1350W25.538.635.9
SLM167J36.923.439.7
表3  CrMoTi中熵合金的名义成分和电弧熔炼及增材制造成型CrMoTi中熵合金的主元素含量 (atomic fraction / %)
THardnessκcpa
oCHV0.3(W·m-1·K-1)(J·kg-1·K-1)(10-6 m2·s-1)
RT*520.614.03715.26
100455.615.93745.91
207430.018.53826.78
300409.221.03967.37
413372.323.84167.93
500369.625.54288.28
611356.027.34398.63
709-28.44468.84
表4  电弧熔炼CrMoTi中熵合金的硬度和热学性能
图12  增材制造块体的CT分析结果
图13  DLD加工CrMoTi中熵合金中的枝晶结构与元素分布图
图14  DLD加工CrMoTi中熵合金的EBSD像
1 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/adem.200300567
2 Cheng K H, Lai C H, Lin S J, et al. Recent progress in multi-element alloy and nitride coatings sputtered from high-entropy alloy targets [J]. Ann. Chim. Sci. Mat., 2006, 31: 723
doi: 10.3166/acsm.31.723-736
3 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
4 Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
doi: 10.1016/j.pmatsci.2013.10.001
5 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
doi: 10.1016/j.actamat.2016.08.081
6 DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components—Process, structure and properties [J]. Prog. Mater. Sci., 2018, 92: 112
doi: 10.1016/j.pmatsci.2017.10.001
7 Zhang D Y, Sun S J, Qiu D, et al. Metal alloys for fusion-based additive manufacturing [J]. Adv. Eng. Mater., 2018, 20: 1700952
doi: 10.1002/adem.201700952
8 Liu G, Zhou S Y, Yang H W, et al. 3D printed CoCrFeMnNi high-entropy alloy: Microstructure and mechanical properties at room and cryogenic temperatures [J]. Mater. Rep., 2020, 34(6): 11076
8 刘 广, 周溯源, 杨海威 等. 3D打印CoCrFeMnNi高熵合金的微观组织、室温及低温力学性能 [J]. 材料导报, 2020, 34(6): 11076
9 Li R D, Niu P D, Yuan T C, et al. Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical property [J]. J. Alloys Compd., 2018, 746: 125
doi: 10.1016/j.jallcom.2018.02.298
10 Brif Y, Thomas M, Todd I. The use of high-entropy alloys in additive manufacturing [J]. Scr. Mater., 2015, 99: 93
doi: 10.1016/j.scriptamat.2014.11.037
11 Joseph J, Jarvis T, Wu X H, et al. Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted Al x CoCrFeNi high entropy alloys [J]. Mater. Sci. Eng., 2015, A633: 184
12 Popov V V, Katz-Demyanetz A, Koptyug A, et al. Selective electron beam melting of Al0.5CrMoNbTa0.5 high entropy alloys using elemental powder blend [J]. Heliyon, 2019, 5: e01188
doi: 10.1016/j.heliyon.2019.e01188
13 Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys [J]. J. Appl. Phys., 2011, 109: 103505
doi: 10.1063/1.3587228
14 Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys [J]. Mater. Chem. Phys., 2012, 132: 233
doi: 10.1016/j.matchemphys.2011.11.021
15 Yao H W, Qiao J W, Gao M C, et al. MoNbTaV medium-entropy alloy [J]. Entropy, 2016, 18: 189
doi: 10.3390/e18050189
16 Takeuchi A, Inoue A. Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys [J]. Mater. Trans., JIM, 2000, 41: 1372
doi: 10.2320/matertrans1989.41.1372
17 Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Mater. Trans., JIM, 2005, 46: 2817
doi: 10.2320/matertrans.46.2817
18 Troparevsky M C, Morris J R, Kent P R C, et al. Criteria for predicting the formation of single-phase high-entropy alloys [J]. Phys. Rev., 2015, 5X: 011041
19 Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: Challenges and prospects [J]. Mater. Today, 2016, 19: 349
doi: 10.1016/j.mattod.2015.11.026
20 Yu C F, Zhao C C, Zhang Z F, et al. Tensile properties of selective laser melted 316L stainless steel [J]. Acta Metall. Sin., 2020, 56: 683
20 余晨帆, 赵聪聪, 张哲峰 等. 选区激光熔化316L不锈钢的拉伸性能 [J]. 金属学报, 2020, 56: 683
doi: 10.11900/0412.1961.2019.00278
21 Kubo K, Itoh H, Takahashi T, et al. Hydrogen absorbing properties and structures of Ti-Cr-Mo alloys [J]. J. Alloys Compd., 2003, 356-357: 452
doi: 10.1016/S0925-8388(03)00228-7
22 Liu G. Prepare CrMoTi medium-entropy mold alloy by laser-based 3D printing [D]. Harbin: Harbin Institute of Technology, 2020
22 刘 广. 激光3D打印制备模具材料CrMoTi中熵合金 [D]. 哈尔滨: 哈尔滨工业大学, 2020
23 Zhu B D, Peng Y Z, Tao Z Y, et al. Study on Co-base alloy laser-cladding of die steel H13 [J]. Spec. Steel, 1994, 15(5): 38
23 朱蓓蒂, 彭英姿, 陶曾毅 等. H13模具钢表面激光熔覆钴基合金的研究 [J]. 特殊钢, 1994, 15(5): 38
24 Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
doi: 10.1016/j.intermet.2011.01.004
25 Džugan J, Halmešová K, Ackermann M, et al. Thermo-physical properties investigation in relation to deposition orientation for SLM deposited H13 steel [J]. Thermochim. Acta, 2020, 683: 178479
doi: 10.1016/j.tca.2019.178479
26 Chou H P, Chang Y S, Chen S K, et al. Microstructure, thermophysical and electrical properties in Al x CoCrFeNi (0 ≤ x ≤2) high-entropy alloys [J]. Mater. Sci. Eng., 2009, B163: 184
27 Karlsson D, Marshal A, Johansson F, et al. Elemental segregation in an AlCoCrFeNi high-entropy alloy—A comparison between selective laser melting and induction melting [J]. J. Alloys Compd., 2019, 784: 195
doi: 10.1016/j.jallcom.2018.12.267
28 Chen P, Yang C, Li S, et al. In-situ alloyed, oxide-dispersion-strengthened CoCrFeMnNi high entropy alloy fabricated via laser powder bed fusion [J]. Mater. Des., 2020, 194: 108966
doi: 10.1016/j.matdes.2020.108966
29 Tang R Z, Tian R Z. Binary Alloy Phase Digram and Crystal Structure of Intermediate Phase [M]. Changsha: Central South University Press, 2009: 399
29 唐仁政, 田荣璋. 二元合金相图及中间相晶体结构 [M]. 长沙: 中南大学出版社, 2009: 399
30 Johnson L, Mahmoudi M, Zhang B, et al. Assessing printability maps in additive manufacturing of metal alloys [J]. Acta Mater., 2019, 176: 199
doi: 10.1016/j.actamat.2019.07.005
31 Hooper P A. Melt pool temperature and cooling rates in laser powder bed fusion [J]. Addit. Manuf., 2018, 22: 548
[1] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[2] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[3] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[4] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[5] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[6] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[7] 王凯, 晋玺, 焦志明, 乔珺威. CrFeNi中熵合金在宽温域拉伸条件下的力学行为与变形本构方程[J]. 金属学报, 2023, 59(2): 277-288.
[8] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[9] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[10] 侯旭儒, 赵琳, 任淑彬, 彭云, 马成勇, 田志凌. 热输入对电弧增材制造船用高强钢组织与力学性能的影响[J]. 金属学报, 2023, 59(10): 1311-1323.
[11] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[12] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[13] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[14] 王孟, 杨永强, Trofimov Vyacheslav, 宋长辉, 周瀚翔, 王迪. 粉末粒径对AlSi10Mg合金选区激光熔化成形的影响[J]. 金属学报, 2023, 59(1): 147-156.
[15] 宋波, 张金良, 章媛洁, 胡凯, 方儒轩, 姜鑫, 张莘茹, 吴祖胜, 史玉升. 金属激光增材制造材料设计研究进展[J]. 金属学报, 2023, 59(1): 1-15.