|
|
CrMoTi中熵合金的性能及其原位合金化增材制造 |
刘广1,2, 陈鹏1,3, 姚锡禹1, 陈朴1, 刘星辰1, 刘朝阳4, 严明1( ) |
1.南方科技大学 材料科学与工程系 深圳 518055 2.哈尔滨工业大学 材料科学与工程学院 哈尔滨 150001 3.School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, United Kingdom 4.南方科技大学 机械与能源工程系 深圳 518055 |
|
Properties of CrMoTi Medimum-Entropy Alloy and Its In Situ Alloying Additive Manufacturing |
LIU Guang1,2, CHEN Peng1,3, YAO Xiyu1, CHEN Pu1, LIU Xingchen1, LIU Chaoyang4, YAN Ming1( ) |
1.Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China 2.School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China 3.School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, United Kingdom 4.Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China |
引用本文:
刘广, 陈鹏, 姚锡禹, 陈朴, 刘星辰, 刘朝阳, 严明. CrMoTi中熵合金的性能及其原位合金化增材制造[J]. 金属学报, 2022, 58(8): 1055-1064.
Guang LIU,
Peng CHEN,
Xiyu YAO,
Pu CHEN,
Xingchen LIU,
Chaoyang LIU,
Ming YAN.
Properties of CrMoTi Medimum-Entropy Alloy and Its In Situ Alloying Additive Manufacturing[J]. Acta Metall Sin, 2022, 58(8): 1055-1064.
1 |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/adem.200300567
|
2 |
Cheng K H, Lai C H, Lin S J, et al. Recent progress in multi-element alloy and nitride coatings sputtered from high-entropy alloy targets [J]. Ann. Chim. Sci. Mat., 2006, 31: 723
doi: 10.3166/acsm.31.723-736
|
3 |
Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
|
4 |
Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
doi: 10.1016/j.pmatsci.2013.10.001
|
5 |
Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
doi: 10.1016/j.actamat.2016.08.081
|
6 |
DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components—Process, structure and properties [J]. Prog. Mater. Sci., 2018, 92: 112
doi: 10.1016/j.pmatsci.2017.10.001
|
7 |
Zhang D Y, Sun S J, Qiu D, et al. Metal alloys for fusion-based additive manufacturing [J]. Adv. Eng. Mater., 2018, 20: 1700952
doi: 10.1002/adem.201700952
|
8 |
Liu G, Zhou S Y, Yang H W, et al. 3D printed CoCrFeMnNi high-entropy alloy: Microstructure and mechanical properties at room and cryogenic temperatures [J]. Mater. Rep., 2020, 34(6): 11076
|
8 |
刘 广, 周溯源, 杨海威 等. 3D打印CoCrFeMnNi高熵合金的微观组织、室温及低温力学性能 [J]. 材料导报, 2020, 34(6): 11076
|
9 |
Li R D, Niu P D, Yuan T C, et al. Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical property [J]. J. Alloys Compd., 2018, 746: 125
doi: 10.1016/j.jallcom.2018.02.298
|
10 |
Brif Y, Thomas M, Todd I. The use of high-entropy alloys in additive manufacturing [J]. Scr. Mater., 2015, 99: 93
doi: 10.1016/j.scriptamat.2014.11.037
|
11 |
Joseph J, Jarvis T, Wu X H, et al. Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted Al x CoCrFeNi high entropy alloys [J]. Mater. Sci. Eng., 2015, A633: 184
|
12 |
Popov V V, Katz-Demyanetz A, Koptyug A, et al. Selective electron beam melting of Al0.5CrMoNbTa0.5 high entropy alloys using elemental powder blend [J]. Heliyon, 2019, 5: e01188
doi: 10.1016/j.heliyon.2019.e01188
|
13 |
Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys [J]. J. Appl. Phys., 2011, 109: 103505
doi: 10.1063/1.3587228
|
14 |
Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys [J]. Mater. Chem. Phys., 2012, 132: 233
doi: 10.1016/j.matchemphys.2011.11.021
|
15 |
Yao H W, Qiao J W, Gao M C, et al. MoNbTaV medium-entropy alloy [J]. Entropy, 2016, 18: 189
doi: 10.3390/e18050189
|
16 |
Takeuchi A, Inoue A. Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys [J]. Mater. Trans., JIM, 2000, 41: 1372
doi: 10.2320/matertrans1989.41.1372
|
17 |
Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Mater. Trans., JIM, 2005, 46: 2817
doi: 10.2320/matertrans.46.2817
|
18 |
Troparevsky M C, Morris J R, Kent P R C, et al. Criteria for predicting the formation of single-phase high-entropy alloys [J]. Phys. Rev., 2015, 5X: 011041
|
19 |
Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: Challenges and prospects [J]. Mater. Today, 2016, 19: 349
doi: 10.1016/j.mattod.2015.11.026
|
20 |
Yu C F, Zhao C C, Zhang Z F, et al. Tensile properties of selective laser melted 316L stainless steel [J]. Acta Metall. Sin., 2020, 56: 683
|
20 |
余晨帆, 赵聪聪, 张哲峰 等. 选区激光熔化316L不锈钢的拉伸性能 [J]. 金属学报, 2020, 56: 683
doi: 10.11900/0412.1961.2019.00278
|
21 |
Kubo K, Itoh H, Takahashi T, et al. Hydrogen absorbing properties and structures of Ti-Cr-Mo alloys [J]. J. Alloys Compd., 2003, 356-357: 452
doi: 10.1016/S0925-8388(03)00228-7
|
22 |
Liu G. Prepare CrMoTi medium-entropy mold alloy by laser-based 3D printing [D]. Harbin: Harbin Institute of Technology, 2020
|
22 |
刘 广. 激光3D打印制备模具材料CrMoTi中熵合金 [D]. 哈尔滨: 哈尔滨工业大学, 2020
|
23 |
Zhu B D, Peng Y Z, Tao Z Y, et al. Study on Co-base alloy laser-cladding of die steel H13 [J]. Spec. Steel, 1994, 15(5): 38
|
23 |
朱蓓蒂, 彭英姿, 陶曾毅 等. H13模具钢表面激光熔覆钴基合金的研究 [J]. 特殊钢, 1994, 15(5): 38
|
24 |
Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
doi: 10.1016/j.intermet.2011.01.004
|
25 |
Džugan J, Halmešová K, Ackermann M, et al. Thermo-physical properties investigation in relation to deposition orientation for SLM deposited H13 steel [J]. Thermochim. Acta, 2020, 683: 178479
doi: 10.1016/j.tca.2019.178479
|
26 |
Chou H P, Chang Y S, Chen S K, et al. Microstructure, thermophysical and electrical properties in Al x CoCrFeNi (0 ≤ x ≤2) high-entropy alloys [J]. Mater. Sci. Eng., 2009, B163: 184
|
27 |
Karlsson D, Marshal A, Johansson F, et al. Elemental segregation in an AlCoCrFeNi high-entropy alloy—A comparison between selective laser melting and induction melting [J]. J. Alloys Compd., 2019, 784: 195
doi: 10.1016/j.jallcom.2018.12.267
|
28 |
Chen P, Yang C, Li S, et al. In-situ alloyed, oxide-dispersion-strengthened CoCrFeMnNi high entropy alloy fabricated via laser powder bed fusion [J]. Mater. Des., 2020, 194: 108966
doi: 10.1016/j.matdes.2020.108966
|
29 |
Tang R Z, Tian R Z. Binary Alloy Phase Digram and Crystal Structure of Intermediate Phase [M]. Changsha: Central South University Press, 2009: 399
|
29 |
唐仁政, 田荣璋. 二元合金相图及中间相晶体结构 [M]. 长沙: 中南大学出版社, 2009: 399
|
30 |
Johnson L, Mahmoudi M, Zhang B, et al. Assessing printability maps in additive manufacturing of metal alloys [J]. Acta Mater., 2019, 176: 199
doi: 10.1016/j.actamat.2019.07.005
|
31 |
Hooper P A. Melt pool temperature and cooling rates in laser powder bed fusion [J]. Addit. Manuf., 2018, 22: 548
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|