Please wait a minute...
金属学报  2021, Vol. 57 Issue (1): 103-110    DOI: 10.11900/0412.1961.2020.00158
  研究论文 本期目录 | 过刊浏览 |
微合金化元素La对亚共晶Al-Si合金凝固组织与力学性能的影响
郑秋菊1,2, 叶中飞3, 江鸿翔1, 卢明3, 张丽丽1, 赵九洲1,2()
1.中国科学院 金属研究所 沈阳 110016
2.中国科学技术大学 材料科学与工程学院 沈阳 110016
3.国网河南省电力公司 电力科学研究院 郑州 450052
Effect of Micro-Alloying Element La on Solidification Microstructure and Mechanical Properties of Hypoeutectic Al-Si Alloys
ZHENG Qiuju1,2, YE Zhongfei3, JIANG Hongxiang1, LU Ming3, ZHANG Lili1, ZHAO Jiuzhou1,2()
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.Electric Power Research Institute of State Grid Henan Electric Power Company, Zhengzhou 450052, China
引用本文:

郑秋菊, 叶中飞, 江鸿翔, 卢明, 张丽丽, 赵九洲. 微合金化元素La对亚共晶Al-Si合金凝固组织与力学性能的影响[J]. 金属学报, 2021, 57(1): 103-110.
Qiuju ZHENG, Zhongfei YE, Hongxiang JIANG, Ming LU, Lili ZHANG, Jiuzhou ZHAO. Effect of Micro-Alloying Element La on Solidification Microstructure and Mechanical Properties of Hypoeutectic Al-Si Alloys[J]. Acta Metall Sin, 2021, 57(1): 103-110.

全文: PDF(18770 KB)   HTML
摘要: 

利用DTA、OM、SEM、TEM、EPMA以及拉伸实验等方法研究了在添加α-Al晶粒细化剂Al-Ti-B中间合金和共晶Si变质剂Sr条件下,微合金化元素La对亚共晶Al-Si合金凝固组织与力学性能的影响。结果表明:添加微量稀土La能进一步细化α-Al,变质共晶Si,显著提高合金的塑性。分析表明:微量La能降低α-Al晶核与TiB2的润湿角,减小α-Al的形核过冷度,促进α-Al的进一步细化;La能诱发交错孪晶的形成,增大共晶Si的孪晶密度,改变Si相的长大行为,进一步改变共晶Si的形貌。当La的添加量达到0.10%时,LaAlSi金属间化合物在凝固过程的共晶反应阶段形成,该化合物的形成将降低合金的塑性。

关键词 Al-Si合金微合金化元素La凝固组织力学性能    
Abstract

Hypoeutectic Al-Si alloys are extensively used in the welding industry owing to their excellent cast-ability, low coefficient of thermal expansion, and good weldability. Unfortunately, Al-Si alloys solidify under conventional cooling conditions, forming coarse dendritic α-Al grains with an eutectic structure and a flake-like morphology that has poor mechanical properties. Chemical inoculations are often used to control the size of α-Al grains and the morphology of the eutectic Si particles. The grain refiner Al-Ti-B master alloy and eutectic Si modifier Sr are commonly used in industry. In recent years, great attention has been paid to controlling the microstructure and mechanical properties of hypoeutectic Al-Si alloys through the use of the cost-effective rare earth element La. Previous studies have mainly focused on the effects of La addition on the microstructural evolution and improvements of the mechanical properties. However, to date there have been no studies on the effects of combined addition of La, Al-Ti-B master alloy and Sr on the microstructure and mechanical properties of Al-Si alloys. In this work, solidification experiments were performed to investigate the effects of the micro-alloying element La, Al-Ti-B master alloy, and Sr on the solidification microstructure and mechanical properties of hypoeutectic Al-Si alloys. These results show that synergistic effects are achieved by combinations of La, Al-Ti-B master alloy, and Sr. An addition of 0.06%La was sufficient for effective α-Al grain refinement, eutectic Si particle modification, and improved the ductility of the alloys. Excess La addition formed a coarse LaAlSi intermetallic compound, which deteriorated the ductility of the alloy. The micro-alloying element La refined the α-Al grains by acting as a surfactant that decreased the wetting angle between the TiB2 nucleation substrate and the α-Al nucleus. It modified the eutectic Si particles by promoting the formation of the multiple Si twins and changing the growth behaviors of the Si particles.

Key wordsAl-Si alloy    micro-alloying element La    solidification microstructure    mechanical property
收稿日期: 2020-05-12     
ZTFLH:  TG113.12  
基金资助:国家自然科学基金项目(51771210);国家电网有限公司总部科技项目(5500-201924129A-0-0-00)
作者简介: 郑秋菊,女,1994年生,博士生
图1  不同La添加量下Al-6Si合金的OM像
图2  Al-6Si合金平均晶粒尺寸随La添加量的变化
图3  不含La和含0.06%La的Al-6Si合金的显微组织SEM像
图4  不含La和含0.06%La的Al-6Si合金中共晶Si的TEM明场像及其SAED花样
图5  含0.10%La的Al-6Si合金中稀土化合物和共晶Si的BEI像及EPMA元素面分布
图6  含0.10%La的Al-6Si合金中稀土化合物的TEM明场像、EDS结果及其SAED花样
图7  不同La添加量下Al-6Si合金的DTA冷却曲线及α-Al和共晶Si的形核过冷度随La添加量的变化
图8  不同La添加量下合金的室温拉伸性能
ElementAlSiLaSrTiB
Al------
Si-19-----
La-38-73----
Sr-18-4914---
Ti-30-662053--
B0-14-47-18-58-
表1  不同组元之间的混合焓变[23] (kJ·mol-1)
1 Zhao Z H, Xu Z, Wang G S, et al. Microstructure and property of welding joint weld with micro-Alloying 4043 welding wire [J]. Acta Metall. Sin., 2013, 49: 946
1 赵志浩, 徐 振, 王高松等. 微合金化4043铝合金焊丝焊接接头的组织与性能 [J]. 金属学报, 2013, 49: 946
2 Hegde S, Prabhu K N. Modification of eutectic silicon in Al-Si alloys [J]. J. Mater. Sci., 2008, 43: 3009
3 Guan R G, Tie D. A review on grain refinement of aluminum alloys: Progresses, challenges and prospects [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 409
4 Hosch T, Napolitano R E. The effect of the flake to fiber transition in silicon morphology on the tensile properties of Al-Si eutectic alloys [J]. Mater. Sci. Eng., 2010, A528: 226
5 Chen Z N, Kang H J, Fan G H, et al. Grain refinement of hypoeutectic Al-Si alloys with B [J]. Acta Mater., 2016, 120: 168
6 Timpel M, Wanderka N, Schlesiger R, et al. The role of strontium in modifying aluminium-silicon alloys [J]. Acta Mater., 2012, 60: 3920
7 Bolzoni L, Xia M X, Babu N H. Formation of equiaxed crystal structures in directionally solidified Al-Si alloys using Nb-based heterogeneous nuclei [J]. Sci. Rep., 2016, 6: 39554
8 Triveño Rios C, Peres M M, Bolfarini C, et al. Microstructure and mechanical properties of Al-Si-Mg ribbons [J]. J. Alloys Compd., 2010, 495: 386
9 Dang B, Zhang X, Chen Y Z, et al. Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy [J]. Sci. Rep., 2016, 6: 30874
10 Zhang Z T, Li J, Yue H Y, et al. Microstructure evolution of A356 alloy under compound field [J]. J. Alloys Compd., 2009, 484: 458
11 Wang J Y, Wang B J, Huang L F. Structural evolution of Al-8%Si hypoeutectic alloy by ultrasonic processing [J]. J. Mater. Sci. Technol., 2017, 33: 1235
12 Liu Z, Xu L N, Yu Z F, et al. Research on the morphology and fractaldimension of primary phase in semisolid A356-La aluminum alloy by electro-magnetic stirring [J]. Acta Metall. Sin., 2016, 52: 698
12 刘 政, 徐丽娜, 余昭福等. 电磁场作用下半固态A356-La铝合金初生相形貌及分形维数的研究 [J]. 金属学报, 2016, 52: 698
13 Lu L, Dahle A K. Effects of combined additions of Sr and AlTiB grain refiners in hypoeutectic Al-Si foundry alloys [J]. Mater. Sci. Eng., 2006, A435-436: 288
14 Tan P, Yang Y, Sui Y D, et al. The influence of Al-10Sr or/ and Al-5Ti-1B on microstructure and mechanical properties of Al-12Si-4Cu-2Ni-0.8 Mg alloys [J]. J. Alloys Compd., 2019, 809: 151856
15 Timelli G, Caliari D, Rakhmonov J. Influence of process parameters and Sr addition on the microstructure and casting defects of LPDC A356 alloy for engine blocks [J]. J. Mater. Sci. Technol., 2016, 32: 515
16 Kairy S K, Rouxel B, Dumbre J, et al. Simultaneous improvement in corrosion resistance and hardness of a model 2xxx series Al-Cu alloy with the microstructural variation caused by Sc and Zr additions [J]. Corros. Sci., 2019, 158: 108095
17 Li J H, Wang X D, Ludwig T H, et al. Modification of eutectic Si in Al-Si alloys with Eu addition [J]. Acta Mater., 2015, 84: 153
18 Tsai Y C, Chou C Y, Lee S L, et al. Effect of trace La addition on the microstructures and mechanical properties of A356 (Al-7Si-0.35Mg) aluminum alloys [J]. J. Alloys Compd., 2009, 487: 157
19 Zheng Q J, Zhang L L, Jiang H X, et al. Effect mechanisms of micro-alloying element La on microstructure and mechanical properties of hypoeutectic Al-Si alloys [J]. J. Mater. Sci. Technol., 2020, 47: 142
20 Pourbahari B, Emamy M. Effects of La intermetallics on the structure and tensile properties of thin section gravity die-cast A357 Al alloy [J]. Mater. Des., 2016, 94: 111
21 Quested T E, Dinsdale A T, Greer A L. Thermodynamic modelling of growth-restriction effects in aluminium alloys [J]. Acta Mater., 2005, 53: 1323
22 Quested T E, Greer A L. Grain refinement of Al alloys: Mechanisms determining as-cast grain size in directional solidification [J]. Acta Mater., 2005, 53: 4643
23 Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Mater. Trans, 2005, 46: 2817
24 Zhou S H, Napolitano R E. Phase equilibria and thermodynamic limits for partitionless crystallization in the Al-La binary system [J]. Acta Mater., 2006, 54: 831
25 Li S B, Du W B, Wang X D, et al. Effect of Zr addition on the grain refinement mechanism of Mg-Gd-Er alloys [J]. Acta Metall. Sin., 2018, 54: 911
25 李淑波, 杜文博, 王旭东等. Zr对Mg-Gd-Er合金晶粒细化机理的影响 [J]. 金属学报, 2018, 54: 911
26 Barrirero J, Pauly C, Engstler M, et al. Eutectic modification by ternary compound cluster formation in Al-Si alloys [J]. Sci. Rep., 2019, 9: 5506
27 Lu S Z, Hellawell A. The mechanism of silicon modification in aluminum-silicon alloys: Impurity induced twinning [J]. Metall. Trans., 1987, 18A: 1721
28 Sui Y D, Wang Q D, Wang G L, et al. Effects of Sr content on the microstructure and mechanical properties of cast Al-12Si-4Cu-2Ni-0.8Mg alloys [J]. J. Alloys Compd., 2015, 622: 572
29 Rao J S, Zhang J, Liu R X, et al. Modification of eutectic Si and the microstructure in an Al-7Si alloy with barium addition [J]. Mater. Sci. Eng., 2018, A728: 72
30 Samuel E, Golbahar B, Samuel A M, et al. Effect of grain refiner on the tensile and impact properties of Al-Si-Mg cast alloys [J]. Mater. Des., 2014, 56: 468
31 Ma S M, Wang X M. Mechanical properties and fracture of in-situ Al3Ti particulate reinforced A356 composites [J]. Mater. Sci. Eng., 2019, A754: 46
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[11] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.