Please wait a minute...
金属学报  2020, Vol. 56 Issue (4): 385-399    DOI: 10.11900/0412.1961.2019.00372
  综述 本期目录 | 过刊浏览 |
新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径
杨柯1,史显波1,2(),严伟1,2,曾云鹏1,单以银1,2,任毅3,4
1.中国科学院金属研究所 沈阳 110016
2.中国科学院核用材料与安全评价重点实验室 沈阳 110016
3.鞍钢集团钢铁研究院 鞍山 114009
4.鞍钢集团海洋装备用金属材料及其应用国家重点实验室 鞍山 114009
Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels
YANG Ke1,SHI Xianbo1,2(),YAN Wei1,2,ZENG Yunpeng1,SHAN Yiyin1,2,REN Yi3,4
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.Key Laboratory of Nuclear Materials and Safety Assessment, Chinese Academy of Sciences, Shenyang 110016, China
3.Institute of Iron and Steel Research, Ansteel Group Corporation, Anshan 114009, China
4.State Key Laboratory of Metal Material for Marine Equipment and Application, Ansteel Group Corporation, Anshan 114009, China
全文: PDF(26009 KB)   HTML
摘要: 

微生物腐蚀是造成管线材料破坏和失效并导致巨大经济损失的一个重要原因,发展具有耐微生物腐蚀性能的新型管线钢是从材料自身角度降低发生微生物腐蚀倾向的新途径,具有重要的科学意义和应用价值。在传统的管线钢化学成分基础上,通过适量的Cu合金化,在服役环境中发生的微量铜离子的持续释放会杀死细菌并抑制细菌生物膜形成,从而起到耐微生物腐蚀作用,这是提高管线钢耐微生物腐蚀性能的主要创新思想。本文通过总结当前管线钢的微生物腐蚀及其研究现状,提出了一种从材料角度防治微生物腐蚀的新方法。介绍了新型含Cu管线钢在合金设计、组织结构、力学性能、抗氢致开裂性能和耐微生物腐蚀性能方面的研究进展,重点介绍了含Cu管线钢在实验室条件下的耐微生物腐蚀性能研究结果,最后展望了新型含Cu管线钢的未来发展趋势。

关键词 管线钢Cu合金化显微组织力学性能微生物腐蚀氢致开裂    
Abstract

Microbiologically influenced corrosion (MIC) has been an important reason leading to the damage and failure of pipeline steels, bringing a great economic loss. Development of MIC resistant pipeline steel is a new strategy to mitigate MIC from the aspect of material itself, having important scientific significance and application value. By proper Cu alloying design to the traditional pipeline steels, aiming at continuous release of Cu ions to kill the bacteria and inhibit the formation of bacterial biofilm, a creative strategy for improving the MIC resistance of pipeline steels has been proposed. This article briefly introduces the MIC of pipeline steel and its research status, and then the research progress on alloy design, microstructure, mechanical properties, hydrogen induced cracking resistance and MIC resistance of novel Cu-bearing pipeline steels are reviewed, and the research results on MIC resistance of the novel Cu-bearing pipeline steels under the laboratory conditions are stressed, and finally the future tendency on research and development of this type of novel steels is suggested.

Key wordspipeline steel    Cu alloying    microstructure    mechanical property    microbiologically influenced corrosion    hydrogen induced cracking
收稿日期: 2019-11-04     
ZTFLH:  TG142.1  
基金资助:中国管线研究组织项目(CPRO2018NO4);辽宁省博士科研启动基金项目(20180540083);沈阳市科技计划项目(18-013-0-53);鞍钢集团海洋装备用金属材料及其应用国家重点实验室开放基金项目和企业合作“耐微生物腐蚀管线钢开发”项目
通讯作者: 史显波     E-mail: xbshi@imr.ac.cn
Corresponding author: Xianbo SHI     E-mail: xbshi@imr.ac.cn
作者简介: 杨 柯,男,1961年生,研究员

引用本文:

杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
Ke YANG, Xianbo SHI, Wei YAN, Yunpeng ZENG, Yiyin SHAN, Yi REN. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels. Acta Metall Sin, 2020, 56(4): 385-399.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00372      或      https://www.ams.org.cn/CN/Y2020/V56/I4/385

图1  新型含Cu管线钢的化学成分设计思路
SteelCSiMnCuMoCrNiNb+V+TiSPFe
X80-Cu0.0310.131.091.060.310.320.320.050.00110.005Bal.
X800.0500.161.770.200.300.310.300.100.00100.005Bal.
X65-Cu0.0220.120.071.340.10-0.300.060.00200.005Bal.
X650.0600.131.640.010.10--0.060.00100.010Bal.
表1  新型含Cu管线钢和传统商用管线钢的化学成分分析结果 (mass fraction / %)
图2  X80级含Cu管线钢显微组织的OM像和组织中析出的纳米尺寸富Cu相[60]
图3  X65级含Cu管线钢显微组织的OM像和组织中析出的纳米尺寸富Cu相
图4  X80-Cu (1.0Cu as-aged)和X80管线钢的拉伸应力-应变曲线和冲击断裂形貌[60]
图5  X65-Cu和X65管线钢的力学性能
图6  在API-RP38培养基中培养14 d后硫酸盐还原菌(SRB)在X65含Cu管线钢表面活/死染色形貌的CLSM像
图7  X65含Cu管线钢在API-RP38培养基中培养65 d后表面点蚀形貌的SEM像
图8  X65含Cu管线钢在API-RP38培养基中培养65 d后的点蚀坑数据统计
图9  X80-Cu钢和X80钢在含有SRB的土壤浸出液中浸泡20 d后表面腐蚀形貌的SEM像[63]
图10  X80-Cu和X80钢在含有SRB的土壤浸出液中浸泡20 d后表面上的点蚀坑直径分布

Steel

Pit density mm-2Maximum pit depth / μmAverage pit depth / μm
X80-Cu681.91.5±0.25
X8050823.68.3±6.8
表2  X80-Cu和X80钢在含有SRB的土壤浸出液中浸泡20 d后的点蚀坑数据统计
图11  X80-Cu和X80钢在含有SRB的土壤浸出液中浸泡20 d后的点蚀坑三维形貌[63]
图12  X80-Cu (A1.0Cu)和X80钢在铜绿假单胞菌(P. aeruginosa)菌液中经过1、3和5 d浸泡后的生物膜厚度[60]
图13  X80-Cu和X80钢在P. aeruginosa菌液中经过1、3和5 d浸泡后活/死细菌的CLSM像[60]
图14  X80-Cu和X80钢在接种P. aeruginosa菌液中浸泡14 d后表面点蚀坑形貌的SEM像[60]
图15  时效态X80-Cu钢和X80钢在NS4溶液中浸泡60 d后的腐蚀截面图和EDS分析结果[60]
图16  含Cu管线钢耐微生物腐蚀机制示意图[60]
图17  含Cu管线钢提高抗氢致开裂(HIC)性能的机制
[1] Huang Y, Liu S J, Jiang C Y. Microbiologically influenced corrosion and mechanisms [J]. Microbiol. China, 2017, 44: 1699
[1] 黄 烨, 刘双江, 姜成英. 微生物腐蚀及腐蚀机理研究进展 [J]. 微生物学通报, 2017, 44: 1699
[2] Javaherdashti R. Microbiologically Influenced Corrosion: An Engineering Insight [M]. London: Springer, 2008: 1
[3] Liu H W, Xu D K, Wu Y N, et al. Research progress in corrosion of steels induced by sulfate reducing bacteria [J]. Corros. Sci. Prot. Technol., 2015, 27: 409
[3] 刘宏伟, 徐大可, 吴亚楠等. 微生物生物膜下的钢铁材料腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2015, 27: 409
[4] Usher K M, Kaksonen A H, Cole I, et al. Critical review: Microbially influenced corrosion of buried carbon steel pipes [J]. Int. Biodeter. Biodegr., 2014, 93: 84
[5] Jiang B, Du C W, Li X G, et al. Development of typical microbiologically influenced corrosion research [J]. Corros. Prot. Petrochem. Ind., 2008, 25(4): 1
[5] 蒋 波, 杜翠微, 李晓刚等. 典型微生物腐蚀的研究进展 [J]. 石油化工腐蚀与防护, 2008, 25(4): 1
[6] Lin J, Zhu G W, Sun C, et al. A review of microbiologically influenced corrosion of metals [J]. Corros. Sci. Prot. Technol., 2001, 13: 279
[6] 林 建, 朱国文, 孙 成等. 金属的微生物腐蚀 [J]. 腐蚀科学与防护技术, 2001, 13: 279
[7] Yin Y S, Dong L H, Liu T, et al. Microbiologically Influenced Corrosion of Materials Used in Ocean [M]. Beijing: Science Press, 2012: 1
[7] 尹衍升, 董丽华, 刘 涛等. 海洋材料的微生物附着腐蚀 [M]. 北京: 科学出版社, 2012: 1
[8] Shi X B, Yang C G, Yan W, et al. Microbiologically influenced corrosion of pipeline steels [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 9
[8] 史显波, 杨春光, 严 伟等. 管线钢的微生物腐蚀 [J]. 中国腐蚀与防护学报, 2019, 39: 9
[9] Xia J, Xu D K, Nan L, et al. Study on mechanisms of microbiologically influenced corrosion of metal from the perspective of bio-electrochemistry and bio-energetics [J]. Chin. J. Mater. Res., 2016, 30: 161
[9] 夏 进, 徐大可, 南 黎等. 从生物能量学和生物电化学角度研究金属微生物腐蚀的机理 [J]. 材料研究学报, 2016, 30: 161
[10] Li K, Whitfield M, van Vliet K J. Beating the bugs: Roles of microbial biofilms in corrosion [J]. Corros. Rev., 2013, 31: 73
[11] Eckert R B. Emphasis on biofilms can improve mitigation of microbiologically influenced corrosion in oil and gas industry [J]. Corros. Eng. Sci. Technol., 2015, 50: 163
[12] Enning D, Venzlaff H, Garrelfs J, et al. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust [J]. Environ. Microbiol., 2012, 14: 1772
[13] Venzlaff H, Enning D, Srinivasan J, et al. Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria [J]. Corros. Sci., 2013, 66: 88
[14] Zhang P Y, Xu D K, Li Y C, et al. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the desulfovibrio vulgaris biofilm [J]. Bioelectrochemistry, 2015, 101: 14
[15] Kato S. Microbial extracellular electron transfer and its relevance to iron corrosion [J]. Microb. Biotechnol., 2016, 9: 141
[16] Xu D K, Gu T Y. Carbon source starvation triggered more aggressive corrosion against carbon steel by the desulfovibrio vulgaris biofilm [J]. Int. Biodeter. Biodegr., 2014, 91: 74
[17] Xu D K, Li Y C, Gu T Y. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria [J]. Bioelectrochemistry, 2016, 110: 52
[18] Xu D, Jia R, Li Y, et al. Advances in the treatment of problematic industrial biofilms [J]. World J. Microbiol. Biotechnol., 2017, 33: 97
[19] Popoola L, Grema A, Latinwo G, et al. Corrosion problems during oil and gas production and its mitigation [J]. Int. J. Ind. Chem., 2013, 4: 35
[20] Wang K, Xiao L, Yu X Y, et al. Discussion on the influence of biocides on marine environment [J]. China Coat., 2010, 25(8): 24
[20] 王 科, 肖 玲, 于雪艳等. 防污剂对海洋环境的影响探讨 [J]. 中国涂料, 2010, 25(8): 24
[21] Jin S J, Ren L, Yang K. Bio-functional Cu containing biomaterials: A new way to enhance bio-adaption of biomaterials [J]. J. Mater. Sci. Technol., 2016, 32: 835
[22] Akhavan O, Ghaderi E. Cu and CuO nanoparticles immobilized by silica thin films as antibacterial materials and photocatalysts [J]. Surf. Coat. Technol., 2010, 205: 219
[23] Chen S H, Lv M Q, Zhang, J D, et al. Microstructure and antibacterial properties of Cu-contained antibacterial stainless steel [J]. Acta Metall. Sin., 2004, 40: 314
[23] 陈四红, 吕曼祺, 张敬党等. 含Cu抗菌不锈钢的微观组织及其抗菌性能 [J]. 金属学报, 2004, 40: 314
[24] Nan L, Liu Y Q, Yang W C, et al. Study on antibacterial properties of copper-containing antibacterial stainless steels [J]. Acta Metall. Sin., 2007, 43: 1065
[24] 南 黎, 刘永前, 杨伟超等. 含铜抗菌不锈钢的抗菌特性研究 [J]. 金属学报, 2007, 43: 1065
[25] Wang S, Yang C G, Xu D K, et al. Effect of heat treatment on antibacterial performance of 3Cr13MoCu martensitic stainless steel [J]. Acta Metall. Sin., 2014, 50: 1453
[25] 王 帅, 杨春光, 徐大可等. 热处理对3Cr13MoCu马氏体不锈钢抗菌性能的影响 [J]. 金属学报, 2014, 50: 1453
[26] Xia J, Yang C G, Xu D K, et al. Laboratory investigation of the microbiologically influenced corrosion (MIC) resistance of a novel Cu-bearing 2205 duplex stainless steel in the presence of an aerobic marine Pseudomonas aeruginosa biofilm [J]. Biofouling, 2015, 31: 481
[27] Nan L, Xu D K, Gu T Y, et al. Microbiological influenced corrosion resistance characteristics of a 304-Cu stainless steel against Escherichia coli [J]. Mater. Sci. Eng., 2015, C48: 228
[28] Nan L, Ren G G, Wang D H, et al. Antibacterial performance of Cu-bearing stainless steel against Staphylococcus aureus and Pseudomonas aeruginosa in whole milk [J]. J. Mater. Sci. Technol., 2016, 32: 445
[29] Yang K, Shan Y Y, Shi X B, et al. A Cu-bearing pipeline steel and its strengthening heat treatment process [P]. Chin Pat, 201510419067.3, 2018
[29] 杨 柯, 单以银, 史显波等. 一种含Cu管线钢及其强化热处理工艺 [P]. 中国专利, 201510419067.3, 2018)
[30] Shan Y Y, Yang K, Shi X B, et al. A pipeline steel with resistance to microbiologically influenced corrosion [P]. Chin Pat, 201510418577.9, 2019
[30] 单以银, 杨 柯, 史显波等. 一种具有耐微生物腐蚀性能的管线钢 [P]. 中国专利, 201510418577.9, 2019)
[31] Huo C Y, Li Y, Ji L K. Development and applications of pipeline steel in long-distance gas pipeline of China [A]. Energy Materials 2014 [C]. Cham: Springer, 2014: 23
[32] Videla H A. Prevention and control of biocorrosion [J]. Int. Biodeter. Biodegr., 2002, 49: 259
[33] Li S Y, Kim Y G, Jeon K S, et al. Microbiologically influenced corrosion of underground pipelines under the disbonded coatings [J]. Met. Mater., 2000, 6: 281
[34] Enning D, Garrelfs J. Corrosion of iron by sulfate-reducing bacteria: New views of an old problem [J]. Appl. Environ. Microbiol., 2014, 80: 1226
[35] Abedi S S, Abdolmaleki A, Adibi N. Failure analysis of SCC and SRB induced cracking of a transmission oil products pipeline [J]. Eng. Fail. Anal., 2007, 14: 250
[36] Jacobson G A. Corrosion at Prudhoe Bay—A lesson on the line [J]. Mater. Perform., 2007, 46(8): 26
[37] Bhat S, Kumar B, Prasad S R, et al. Failure of a new 8-in pipeline from group gathering station to central tank farm [J]. Mater. Perform., 2011, 50(5): 50
[38] Al-Jaroudi S S, UI-Hamid A, Al-Gahtani M M. Failure of crude oil pipeline due to microbiologically induced corrosion [J]. Corros. Eng. Sci. Technol., 2011, 46: 568
[39] Liu L. Corrosion behavior of sulfate reducing bacteria in X52 pipeline steel [D]. Chengdu: Southwest Petroleum University, 2016
[39] 刘 黎. X52输油管道硫酸盐还原菌腐蚀行为研究 [D]. 成都: 西南石油大学, 2016
[40] Niu T, Yang J W, Wang L, et al. Pitting mechanism of X60 pipeline steel under the action of SRB [J]. Corros. Prot., 2014, 35: 1060
[40] 牛 涛, 杨建炜, 王 林等. 硫酸盐还原菌作用下X60管线钢的腐蚀穿孔机制 [J]. 腐蚀与防护, 2014, 35: 1060
[41] Xiao R J, Xiao G Q, Huang B, et al. Corrosion failure cause analysis and evaluation of corrosion inhibitors of Ma Huining oil pipeline [J]. Eng. Fail. Anal., 2016, 68: 113
[42] Jack T, Wilmott M, Sutherby R, et al. External corrosion of line pipe: A summary of research activities [J]. Mater. Perform., 1996, 35: 18
[43] Pikas J L. Case histories of external microbiologically influenced corrosion underneath disbonded coatings [A]. Corrosion 96 [C]. Denver, Colorado: NACE International, 1996
[44] Sherar B W A, Power I M, Keech P G, et al. Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion [J]. Corros. Sci., 2011, 53: 955
[45] Chen X, Wang G F, Gao F J, et al. Effects of sulphate-reducing bacteria on crevice corrosion in X70 pipeline steel under disbonded coatings [J]. Corros. Sci., 2015, 101: 1
[46] Alabbas F M, Williamson C, Bhola S M, et al. Influence of sulfate reducing bacterial biofilm on corrosion behavior of low-alloy, high-strength steel (API-5L X80) [J]. Int. Biodeter. Biodegr., 2013, 78: 34
[47] Wu T Q, Xu J, Sun C, et al. Microbiological corrosion of pipeline steel under yield stress in soil environment [J]. Corros. Sci., 2014, 88: 291
[48] Sun C, Xu J, Wang F H. Interaction of sulfate-reducing bacteria and carbon steel Q235 in biofilm [J]. Ind. Eng. Chem. Res., 2011, 50: 12797
[49] Kuang F, Wang J, Yan L, et al. Effects of sulfate-reducing bacteria on the corrosion behavior of carbon steel [J]. Electrochim. Acta, 2007, 52: 6084
[50] Javed M A, Neil W C, Stoddart P R, et al. Influence of carbon steel grade on the initial attachment of bacteria and microbiologically influenced corrosion [J]. Biofouling, 2016, 32: 109
[51] Sreekumari K R, Nandakumar K, Kikuchi Y. Bacterial attachment to stainless steel welds: Significance of substratum microstructure [J]. Biofouling, 2001, 17: 303
[52] Javed M A, Stoddart P R, McArthur S L, et al. The effect of metal microstructure on the initial attachment of Escherichia coli to 1010 carbon steel [J]. Biofouling, 2013, 29: 939
[53] Little B J, Lee J S, Ray R I. The influence of marine biofilms on corrosion: A concise review [J]. Electrochim. Acta, 2008, 54: 2
[54] Qing Y C, Yang Z W, Xian J, et al. Corrosion behavior of Q235 steel under the interaction of alternating current and microorganisms [J]. Acta Metall. Sin., 2016, 52: 1142
[54] 卿永长, 杨志炜, 鲜 俊等. 交流电和微生物共同作用下Q235钢的腐蚀行为 [J]. 金属学报, 2016, 52: 1142
[55] Cetin D, Aksu M L. Corrosion behavior of low-alloy steel in the presence of Desulfotomaculum sp. [J]. Corros. Sci., 2009, 51: 1584
[56] Hejazi D, Hap A J, Yazdipour N, et al. Effect of manganese content and microstructure on the susceptibility of X70 pipeline steel to hydrogen cracking [J]. Mater. Sci. Eng., 2012, A551: 40
[57] Shi X B, Yan W, Wang W, et al. Dynamic continuous cooling transformation behavior of a novel Cu-bearing pipeline steel [J]. ISIJ Int., 2016, 56: 2284
[58] Hu G, Shi X B, Zeng Y P, et al. Effect of copper on continuous cooling transformation behavior of pipeline steels [J]. Heat Treat. Met., 2019, 44(7): 106
[58] 胡 光, 史显波, 曾云鹏等. 铜对管线钢连续冷却转变行为的影响 [J]. 金属热处理, 2019, 44(7): 106
[59] Shi X B, Yan W, Wang W C, et al. Effect of Cu addition in pipeline steels on microstructure, mechanical properties and microbiologically influenced corrosion [J]. Acta. Metall. Sin. (Engl. Lett., 2017, 30: 601
[60] Shi X B, Yan W, Xu D K, et al. Microbial corrosion resistance of a novel Cu-bearing pipeline steel [J]. J. Mater. Sci. Technol., 2018, 34: 2480
[61] Zhao M C, Xiao F R, Shan Y Y, et al. Microstructural characteristic and toughening of an ultralow carbon acicular ferrite pipeline steel [J]. Acta Metall. Sin., 2002, 38: 283
[61] 赵明纯, 肖福仁, 单以银等. 超低碳针状铁素体管线钢的显微特征及强韧性行为 [J]. 金属学报, 2002, 38: 283
[62] Nan L, Cheng J L, Yang K. Antibacterial behavior of a Cu-bearing type 200 stainless steel [J]. J. Mater. Sci. Technol., 2012, 28: 1067
[63] Shi X B, Xu D K, Yan M C, et al. Study on microbiologically influenced corrosion behavior of novel Cu-bearing pipeline steels [J]. Acta Metall. Sin., 2017, 53: 153
[63] 史显波, 徐大可, 闫茂成等. 新型含Cu管线钢的微生物腐蚀行为研究 [J]. 金属学报, 2017, 53: 153
[64] Lou Y T, Lin L, Xu D K, et al. Antibacterial ability of a novel Cu-bearing 2205 duplex stainless steel against Pseudomonas aeruginosa biofilm in artificial seawater [J]. Int. Biodeter. Biodegr., 2016, 110: 199
[65] O'Gorman J, Humphreys H. Application of copper to prevent and control infection. Where are we now? [J]. J. Hosp. Infect., 2012, 81: 217
[66] Liu C, Kong D S, Hsu P C, et al. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light [J]. Nat. Nanotechnol., 2016, 11: 1098
[67] Borkow G,Gabbay J. Copperan ancient remedy returning to fight microbial, fungal and viral infections [J]. Curr. Chem. Biol., 2009, 3: 272
[68] Macomber L, Imlay J A. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity [J]. Proc. Natl. Acad. Sci. USA, 2009, 106: 8344
[69] Liu H W, Xu D K, Yang K, et al. Corrosion of antibacterial Cu-bearing 316L stainless steels in the presence of sulfate reducing bacteria [J]. Corros. Sci., 2018, 132: 46
[70] Craig B D. Effect of copper on the protectiveness of iron sulfide films [J]. Corrosion, 1984, 40: 471
[71] Mendibide C, Sourmail T. Composition optimization of high-strength steels for sulfide stress cracking resistance improvement [J]. Corros. Sci., 2009, 51: 2878
[72] Shi X B, Yan W, Wang W, et al. Novel Cu-bearing high-strength pipeline steels with excellent resistance to hydrogen-induced cracking [J]. Mater. Des., 2016, 92: 300
[73] Shi X B, Yan W, Wang W, et al. Hydrogen-induced cracking resistance of novel Cu-bearing pipeline steels [J]. Acta Metall. Sin., 2018, 54: 1343
[73] 史显波, 严 伟, 王 威等. 新型含Cu管线钢的抗氢致开裂性能 [J]. 金属学报, 2018, 54: 1343
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[3] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[4] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[5] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[6] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[7] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[8] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[9] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[10] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[11] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[12] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[13] 陈芳,李亚东,杨剑,唐晓,李焰. X80钢焊接接头在模拟天然气凝析液中的腐蚀行为[J]. 金属学报, 2020, 56(2): 137-147.
[14] 肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.
[15] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.