Please wait a minute...
金属学报  2013, Vol. 29 Issue (4): 475-482    DOI: 10.3724/SP.J.1037.2012.00614
  论文 本期目录 | 过刊浏览 |
深过冷Ni-30Sn合金凝固组织演化及反常共晶的形成机制
郭雄,林鑫,汪志太,曹永青,彭东剑,黄卫东
西北工业大学凝固技术国家重点实验室, 西安 710072
FORMATION MECHANISM OF ANOMALOUS EUTECTIC AND MICROSTRUCTURE EVOLUTION IN HIGHLY UNDERCOOLED SOLIDIFICATION OF Ni-30%Sn ALLOY
GUO Xiong, LIN Xin, WANG Zhitai, CAO Yongqing, PENG Dongjian, HUANG Weidong
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
引用本文:

郭雄,林鑫,汪志太,曹永青,彭东剑,黄卫东. 深过冷Ni-30Sn合金凝固组织演化及反常共晶的形成机制[J]. 金属学报, 2013, 29(4): 475-482.
GUO Xiong, LIN Xin, WANG Zhitai, CAO Yongqing, PENG Dongjian, HUANG Weidong. FORMATION MECHANISM OF ANOMALOUS EUTECTIC AND MICROSTRUCTURE EVOLUTION IN HIGHLY UNDERCOOLED SOLIDIFICATION OF Ni-30%Sn ALLOY[J]. Acta Metall Sin, 2013, 29(4): 475-482.

全文: PDF(3159 KB)  
摘要: 

采用熔融玻璃净化法+循环过热法, 考察了Ni-30%Sn (质量分数) 亚共晶合金在深过冷快速凝固条件下的再辉行为和组织演化规律. 结果表明, 当过冷度较小时, 合金熔体无明显再辉过程, 随着过冷度增大, 合金熔体凝固逐渐呈现由α-Ni枝晶和(α-Ni+Ni3Sn)层片状共晶或羽毛状共晶向完全(α-Ni+Ni3Sn)反常共晶转变, 在再辉曲线上呈现出由两次再辉向单次再辉的转变. 通过分析Ni-30%Sn亚共晶合金中两相的形核行为、生长速度随过冷度的变化规律以及再辉过程中两相的结晶分数变化, 解释了反常共晶的形成机制. Ni-30%Sn亚共晶合金深过冷凝固反常共晶的形成主要体现在两个方面: 较大过冷度下, 率先形成的细化的α-Ni枝晶骨架在再辉过程中充分熟化、熔断,被依附析出的Ni3Sn相包围, 形成反常共晶; 随着过冷度的增大, 单相枝晶生长向双相枝晶生长转变, 细化的双相枝晶组织在大的再辉度下充分熟化、熔断, 也会形成反常共晶.

关键词 Ni-Sn合金深过冷组织演化反常共晶形成机制    
Abstract

Eutectic solidification involves many important metals and inorganic non-metallic materials. To date, there still exist a large controversy on the formation mechanism of anomalous eutectic under the nonequilibrium rapid solidification. In this work, adopting glass flux method combined with cyclical superheating, the recalescence behaviors and microstructure evolution in highly undercooled solidification of Ni-30%Sn hypoeutectic alloy were investigated. It is found that, there is not an obvious recalescence process in the alloy melts with the low undercooling. With increasing the melt undercooling, the solidification microstructure experienced a gradual phase evolutions from αNi dendrite + (α-Ni+Ni3Sn) lamellar or feathery eutectic to completely (α-Ni+Ni3Sn) anomalous eutectic, which led the recalescence process to occur from twice to once in the cooling process. Through analyzing the nucleation behaviors of α-Ni and Ni3Sn phases and the relationships between their growth velocities and the melt undercoolings, and the variation of their crystalline fraction in rapid recalescence process, the formation mechanism of anomalous eutectic was explained. The formation of anomalous eutectic in highly undercooled Ni-30%Sn hypoeutectic alloy should be attributed to the following two reasons: in the large melt undercooling, the complete coarsening and remelting of the pre-formed refined α-Ni dendrite skeleton occured in the subsequent recalescence process, and then the dendrite fragments were surrounded by the precipitated Ni3Sn phase, which eventually led to the formation of anomalous eutectic. With the undercooling increased, the primary single-phase dendritic growth will change to the two-phase dendritic growth, the coarsening and remelting of two-phasic dendrites occured in the subsequent larger recalescence process, which also led to the formation of anomalous eutectic.

Key wordsNi-Sn alloy    high undercooling    microstructure evolution    anomalous eutectic,    formation mechanism
收稿日期: 2012-10-16     
基金资助:

国家自然科学基金项目50971102和51271213, 国家重点基础研究发展计划项目2011CB610402, 高等学校学科创新引智计划项目08040, 以及高等学校博士学科点专项科研基金项目20116102110016资助

作者简介: 郭雄, 男, 1987年生, 硕士生

[1] Zhou Y H, Hu Z Q, Jie W Q. Solidification Technology. Beijing: Machanical Industry Press, 1998: 227


(周尧和, 胡壮麒, 介万奇. 凝固技术. 北京: 机械工业出版社, 1998: 227)

[2] Kear B H. Rapidly Solidified Amorphous and Crystalline Alloys. NorthHolland: Elsevier Science Pub Co, 1982: 49

[3] Hu H Q. Fundamentals of Metal Solidification. Beijing: Machanical Industry Press, 2000: 255

(胡汉起. 金属凝固原理. 北京: 机械工业出版社, 2000: 255)

[4] Wang B H. PhD Dissertation, Xiangtan University, 2008

(王宝华. 湘潭大学博士学位论文, 2008)

[5] Chen D. Master Thesis, Northwestern Polytechnical University, Xi'an, 2006

(陈达. 西北工业大学硕士学位论文, 西安, 2006)

[6] Fei J Y, Zhou A M, Wang B L. Surf Technol, 1990; 19(6): 7

(费敬银, 周爱梅, 王宝珑. 表面技术, 1990; 19(6): 7)

[7] Zhang Z Z, Song G S, Yang G C, Zhou Y H. Prog Nat Sci, 2000; 10(5): 54

(张振忠, 宋广生, 杨根仓, 周尧和. 自然科学进展, 2000; 10(5): 54)

[8] Kattamis T Z, Flemings M C. Metall Trans, 1970; 1: 1449

[9] Jones B L. Metall Trans, 1971; 2A: 2950

[10] Li M, Nagashio K, Kuribayashi K. Acta Mater, 2002; 50: 3239

[11] Li M, Nagashio K, Ishikawa T, Yoda S, Kuribayashi K. Acta Mater, 2005; 53: 731

[12] Wei B B, Herlach D M, Feuerbacher B, Sommer F. Acta Metall Mater, 1993; 41: 1801

[13] Wei B B, Yang G C, Zhou Y H. Acta Aeronaut Astronaut Sin, 1990; 11(1): 59

(魏炳波, 杨根仓, 周尧和. 航空学报, 1990; 11(1): 59)

[14] Wei B B. PhD Dissertation, Northwestern Polytechnical University, Xi'an, 1989

(魏炳波.西北工业大学博士学位论文, 西安, 1989)

[15] Wei B B, Yang G C, Zhou Y H. Acta Metall, 1991; 39: 1249

[16] Wei B B, Herlach D M, Sommer F, Kurz W. Mater Sci Eng, 1993; A173: 355

[17] Xing L Q, Yang G C, Zhou Y H, Guo Z Q. Mater Sci Prog, 1991; 5(1): 16

(邢力谦, 杨根仓, 周尧和, 郭振琪. 材料科学进展, 1991; 5(1): 16)

[18] Goetzinger R, Barth M, Herlach D M. Acta Mater, 1998; 46: 1647

[19] Li J F, Jie W Q, Zhao S, Zhou Y H. Metall Mater Trans, 2007; 38A: 1806

[20] Yang C, Gao J, Zhang Y K, Kokbe M, Herlach D M. Acta Mater, 2011; 59: 3915

[21] Lin X, Yue T M, Yang H O, Huang W D. Metall Mater Trans, 2007; 38A: 127

[22] Lin X, Yue T M, Yang H O, Huang W D. Acta Mater, 2006; 54: 1901

[23] Herlauch D M. Mater Sci Eng, 1994; R12: 177

[24] Shao G, Tsakiropoulos P. Acta Metall Mater, 1994; 42: 2937

[25] Wu Y, Pillone T J, Shiohara Y. Metall Trans, 1987; 18A: 915

[26] Smityhells C J. Metals Reference Book. 5th Ed, London: Butterworth & Ltd., 1976: 186

[27] Lipon J, Kurz W, Trivedi R. Acta Metall, 1987; 35: 957

[28] Trivedi R, Lipton J, Kurz W. Acta Metall, 1987; 35: 965
[1] 李金富, 周尧和. 液态金属深过冷快速凝固过程中初生固相的重熔[J]. 金属学报, 2018, 54(5): 627-636.
[2] 翟斌, 周凯, 吕鹏, 王海鹏. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54(5): 824-830.
[3] 魏雷, 曹永青, 杨海欧, 林鑫, 王猛, 黄卫东. 粉末床激光重熔条件下Ni-Sn反常共晶微观组织的数值模拟[J]. 金属学报, 2018, 54(12): 1801-1808.
[4] 马宗义, 商乔, 倪丁瑞, 肖伯律. 镁合金搅拌摩擦焊接的研究现状与展望[J]. 金属学报, 2018, 54(11): 1597-1617.
[5] 朱姜蕾, 王庆, 王海鹏. 深过冷液态金属Cu的热物理性质和原子分布[J]. 金属学报, 2017, 53(8): 1018-1024.
[6] 严军辉,坚增运,朱满,常芳娥,许军锋. 深过冷Al-70%Si合金的凝固特性与微观组织*[J]. 金属学报, 2016, 52(8): 931-937.
[7] 骆良顺,刘桐,张延宁,苏彦庆,郭景杰,傅恒志. 定向凝固Al-Y合金组织演化规律及小平面相生长*I. Al-15%Y过共晶合金组织演化规律[J]. 金属学报, 2016, 52(7): 859-865.
[8] 安金岚,王磊,刘杨,胥国华,赵光普. 长期时效对GH4169合金组织演化及低周疲劳行为的影响*[J]. 金属学报, 2015, 51(7): 835-843.
[9] 马文婧,柯常波,周敏波,梁水保,张新平. Sn/Cu互连体系界面和金属间化合物层Kirkendall空洞演化和生长动力学的晶体相场法模拟*[J]. 金属学报, 2015, 51(7): 873-882.
[10] 孙文, 秦学智, 郭建亭, 楼琅洪, 周兰章. (W+Mo)/Cr比对铸造镍基高温合金时效组织和持久性能的影响[J]. 金属学报, 2015, 51(1): 67-76.
[11] 孙文, 秦学智, 郭永安, 郭建亭, 楼琅洪, 周兰章. Nb/Ti比对铸造镍基高温合金长期时效组织演化的影响*[J]. 金属学报, 2014, 50(6): 744-752.
[12] 武会宾, 武凤娟, 杨善武, 唐荻. 微米/亚微米双峰尺度奥氏体组织形成机制*[J]. 金属学报, 2014, 50(3): 269-274.
[13] 柯常波, 周敏波, 张新平. Sn/Cu互连体系界面金属间化合物Cu6Sn5演化和生长动力学的相场法模拟*[J]. 金属学报, 2014, 50(3): 294-304.
[14] 彭鹏,李新中,刘冬梅,苏彦庆,郭景杰,傅恒志. 定向凝固Al-12%Ni过共晶合金组织演化[J]. 金属学报, 2013, 49(3): 311-319.
[15] 常芳娥 赵志伟 朱满 李娜 方雯 董广志 坚增运. 深过冷Ni-21.4%Si共晶合金的凝固特性研究[J]. 金属学报, 2012, 48(7): 875-881.