Please wait a minute...
金属学报  2014, Vol. 50 Issue (3): 294-304    DOI: 10.3724/SP.J.1037.2013.00415
  论文 本期目录 | 过刊浏览 |
Sn/Cu互连体系界面金属间化合物Cu6Sn5演化和生长动力学的相场法模拟*
柯常波1,2) 周敏波2) 张新平2)
1) 华南理工大学机械与汽车工程学院, 广州 510640
2) 华南理工大学材料科学与工程学院, 广州 510640
PHASE FIELD SIMULATION ON MICROSTRUCTURE EVOLUTION AND GROWTH KINETICS OF Cu6Sn5 INTERMETALLIC COMPOUND DURING EARLY INTERFACIAL REACTION IN Sn/Cu SOLDERING SYSTEM
KE Changbo 1,2), ZHOU Minbo 2), ZHANG Xinping 2)
1) School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640
2) School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640
全文: PDF(10923 KB)   HTML
摘要: 运用多相场模型模拟了Sn/Cu互连体系中晶界扩散系数 及界面初生金属间化合物(IMC)相( 相)与液相Sn(L相)间界面能 对界面Cu6>Sn5组织演化和生长动力学行为的影响. 研究表明, 界面IMC层Cu6>Sn5晶粒以紧密排列的扇贝状形貌存在, 其扇贝状形貌同时受  的竞争性影响. IMC的生长过程由3阶段组成: Cu6Sn5晶粒快速生长铺满Cu基底阶段、Cu6Sn5晶粒转变为扇贝状形貌的过渡阶段以及Cu6Sn5层增厚和晶粒粗化同时进行的正常生长阶段. IMC层厚度随 增大而增加, 随 增大而减小; 而Cu6Sn5晶粒的平均横向粒径随 增大而减小, 随 增大而增加. 界面Cu6Sn5层厚度和晶粒横向粒径随反应时间呈指数规律变化, 采用较大 和晶界能 获得的生长指数符合理想的固/液界面反应的生长过程.
关键词 金属间化合物生长动力学组织演化界面反应相场模拟    
Abstract:In the continuous pursuit of miniaturization, multifunction and high-reliability of electronic products and devices, the packing density has been increasing and the dimension of solder joints has been scaling down. In electronic packaging, during the soldering process being employed to Sn-based solders, an intermetallic compound (IMC) layer is formed between molten solder and pad (or under bump metallization, UBM), whose morphology and thickness as well as growth kinetics play an important role in controlling the service performance of the solder joints, in particular for solder interconnects with the decreasing size where the interfacial IMC layer takes up a high volume fraction in the solder joint. Thus, characterizing the morphology change and growth kinetics of interfacial IMC layer is very important to optimize the soldering process and evaluate the reliability of solder interconnects. In this study, a multi-phase-field model is applied to intensively account for the effect of grain boundary diffusion coefficient and IMC/liquid interfacial energy on the morphology evolution and and growth kinetics of IMC. The simulation results show that Cu6Sn5 grains grow up and contact with each other exhibiting a scallop-like morphology which can be influenced by both the grain boundary diffusion coefficient and IMC/liquid interfacial energy. The IMC growth process exhibits three stages, including the initial stage associated with Cu6Sn5 grain broadening followed by the transition stage characterized by scallop shape formation and the last normal growth stage dominated by IMC layer thickening and concurrent Cu6Sn5 grain coarsening. It is also found that the IMC layer thickness increases with grain boundary diffusion coefficient but decreases with IMC/liquid interfacial energy, while the scallop average width decreases with grain boundary diffusion coefficient and increases with IMC/liquid interfacial energy. The relationships between IMC layer thickness/width and reaction time can be well fitted by an exponential growth law, in which the large grain boundary diffusion coefficient combined with (where is the grain boundary energy) can produce precise growth exponent closing to that in the ideal solid-liquid interface reaction.
Key wordsintermetallic compound    growth kinetics    morphological evolution    interfacial reaction    phase field simulation
收稿日期: 2013-07-16     
ZTFLH:  TG113  
基金资助:*国家自然科学基金项目51275178和51205135, 高等学校博士点科研基金项目20110172110003以及中央高校基本科研业务费项目2013ZM0026资助
Corresponding author: ZHANG Xinping, professor, Tel: (020)22236396, E-mail: mexzhang@scut.edu.cn   
作者简介: 柯常波, 男, 1981年生, 博士

引用本文:

柯常波, 周敏波, 张新平. Sn/Cu互连体系界面金属间化合物Cu6Sn5演化和生长动力学的相场法模拟*[J]. 金属学报, 2014, 50(3): 294-304.
. PHASE FIELD SIMULATION ON MICROSTRUCTURE EVOLUTION AND GROWTH KINETICS OF Cu6Sn5 INTERMETALLIC COMPOUND DURING EARLY INTERFACIAL REACTION IN Sn/Cu SOLDERING SYSTEM. Acta Metall Sin, 2014, 50(3): 294-304.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00415      或      https://www.ams.org.cn/CN/Y2014/V50/I3/294

[1] Abtew M, Selvaduray G. Mater Sci Eng, 2000; R27: 95
[2] Yin L M, Yang Y, Liu L Q, Zhang X P. Acta Metall Sin, 2009; 45:422
(尹立孟, 杨 艳, 刘亮岐, 张新平. 金属学报, 2009; 45: 422)
[3] Zhou M B, Ma X, Zhang X P. J Mater Sci Mater Electron, 2012; 23: 1543
[4] Zeng K, Tu K N. Mater Sci Eng, 2002; R38: 55
[5] Zuruzi A S, Chiu C H, Lahiri S K, Tu K N. J Appl Phys, 1999; 86: 4916
[6] Deng X, Piotrowski G, Williams J J, Chawla N. J Electron Mater, 2003; 32: 1403
[7] Shen J, Chan Y C, Liu S Y. Acta Mater, 2009; 57: 5196
[8] Ma D, Wang W D, Lahiri S K. J Appl Phys, 2002; 91: 3312
[9] Chen J, Shen J, Lai S Q, Min D, Wang X C. J Alloys Compd, 2010; 489: 631
[10] Li J F, Agyakwa P A, Johnson C M. Acta Mater, 2010; 58: 3429
[11] Kim H K, Liou H K, Tu K N. Appl Phys Lett, 1995; 66: 2337
[12] Gorlich J, Schmitz G, Tu K N. Appl Phys Lett, 2005; 86: 053106-1
[13] Shin C K, Baik Y J, Huh J Y. J Electron Mater, 2001; 30: 1323
[14] Choi S, Lucas J P, Subramanian K N, Bieler T R. J Mater Sci, 2000; 11: 497
[15] Cho M G, Kim H Y, Seo S K, Lee H M. Appl Phys Lett, 2009; 95: 021905-1
[16] Gong J C, Liu C Q, Conway P P, Silberschmidt V V. Acta Mater, 2008; 56: 4291
[17] Chen J K, Beraun J E, Tzou D Y. J Mater Sci, 1999; 34: 6183
[18] Erickson K L, Hopkins P L, Vianco P T. J Electron Mater, 1998; 27: 117
[19] Huh J Y, Hong K K, Kim Y B, Kim K T. J Electron Mater, 2004; 33: 1161
[20] Hong K K, Huh J Y. J Electron Mater, 2006; 35: 56
[21] Park M S, Arroyave R. Acta Mater, 2010; 58: 4900
[22] Kim S G, Kim W T, Suzuki T, Ode M. J Cryst Growth, 2004; 261: 135
[23] Shim J H, Oh C S, Lee B J, Lee D N. Z Metallkd, 1996; 87: 1
[24] Kim S G, Kim W T, Suzuki T. Phys Rev, 1999; 60E: 7186
[25] Xu G S, Zeng J B, Zhou M B, Cao S S, Ma X, Zhang X P. In: Bi K Y, Yang D G, Cai M eds., Proceedings of the 12th International Conference on Electronic Packaging Technology & High Density Packaging, Piscataway, NJ: IEEE Press, 2012: 289
[26] Zhou M B, Ma X, Zhang X P. Acta Metall Sin, 2013; 3: 341
(周敏波, 马 骁, 张新平. 金属学报, 2013; 3 : 341)
[27] Ma X, Wang F J, Qian Y Y, Yoshida F. Mater Lett, 2003; 57: 3361
[28] Yu D Q, Wang L. J Alloys Compd, 2008; 458: 542
[29] Gosh G. J Appl Phys, 2000; 88: 6887
[30] Suh J O, Tu K N, Lutsenko G V, Gusal A M. Acta Mater, 2008; 56: 1075
[31] Gusak A M, Tu K N. Phys Rev, 2002; 66B: 115403-1
[32] Kim S H, Lee H J, Yu Y S, Won Y S. Acta Mater, 2009; 57: 1254
[33] Laudise R A, Carruthers J R, Jackson K A. Annu Rev Mater Sci, 1971; 1: 253
[1] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.
[2] 吉华,邓运来,徐红勇,郭伟强,邓建峰,范世通. 焊接线能量对5182-O/HC260YD+Z异种材料CMT搭接接头组织与性能的影响[J]. 金属学报, 2019, 55(3): 376-388.
[3] 陈丽群, 邱正琛, 于涛. Ru对NiAl[100](010)刃型位错电子结构的影响[J]. 金属学报, 2019, 55(2): 223-228.
[4] 曹丽华, 陈胤伯, 史起源, 远杰, 刘志权. 合金元素对中温Sn-Ag-Cu焊料互连组织及剪切强度的影响[J]. 金属学报, 2019, 55(12): 1606-1614.
[5] 冯业飞,周晓明,邹金文,王超渊,田高峰,宋晓俊,曾维虎. 粉末高温合金中SiO2夹杂物与基体的界面反应机理及对其变形行为的影响[J]. 金属学报, 2019, 55(11): 1437-1447.
[6] 何贤美, 童六牛, 高成, 王毅超. Nd含量对磁控溅射Si(111)/Cr/Nd-Co/Cr薄膜结构与磁性的影响[J]. 金属学报, 2019, 55(10): 1349-1358.
[7] 邱丰, 佟昊天, 沈平, 丛晓霜, 王轶, 姜启川. 综述:SiC/Al界面反应与界面结构演变规律及机制[J]. 金属学报, 2019, 55(1): 87-100.
[8] 张敏, 慕二龙, 王晓伟, 韩挺, 罗海龙. TA1/Cu/X65复合板焊接接头微观组织及力学性能[J]. 金属学报, 2018, 54(7): 1068-1076.
[9] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[10] 马宗义, 商乔, 倪丁瑞, 肖伯律. 镁合金搅拌摩擦焊接的研究现状与展望[J]. 金属学报, 2018, 54(11): 1597-1617.
[11] 耿林, 吴昊, 崔喜平, 范国华. 基于箔材反应退火合成的TiAl基复合材料板材研究进展[J]. 金属学报, 2018, 54(11): 1625-1636.
[12] 于宣, 张志豪, 谢建新. 不同Ce含量Fe-6.5%Si合金的组织、有序结构和中温拉伸塑性[J]. 金属学报, 2017, 53(8): 927-936.
[13] 赵宁,邓建峰,钟毅,殷录桥. 热迁移下Ni/Sn-xCu/Ni微焊点钎焊界面金属间化合物的演变[J]. 金属学报, 2017, 53(7): 861-868.
[14] 张志杰,黄明亮. Cu/Sn-52In/Cu微焊点液-固电迁移行为研究[J]. 金属学报, 2017, 53(5): 592-600.
[15] 王大伟,修世超. 焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响[J]. 金属学报, 2017, 53(5): 567-574.