Please wait a minute...
金属学报  2014, Vol. 50 Issue (3): 294-304    DOI: 10.3724/SP.J.1037.2013.00415
  本期目录 | 过刊浏览 |
Sn/Cu互连体系界面金属间化合物Cu6Sn5演化和生长动力学的相场法模拟*
柯常波1,2(), 周敏波2, 张新平2
1 华南理工大学机械与汽车工程学院, 广州 510640
2 华南理工大学材料科学与工程学院, 广州 510640
PHASE FIELD SIMULATION ON MICROSTRUCTURE EVOLUTION AND GROWTH KINETICS OF Cu6Sn5 INTERMETALLIC COMPOUND DURING EARLY INTERFACIAL REACTION IN Sn/Cu SOLDERING SYSTEM
KE Changbo1,2(), ZHOU Minbo2, ZHANG Xinping2
1 School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640
2 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640
引用本文:

柯常波, 周敏波, 张新平. Sn/Cu互连体系界面金属间化合物Cu6Sn5演化和生长动力学的相场法模拟*[J]. 金属学报, 2014, 50(3): 294-304.
Changbo KE, Minbo ZHOU, Xinping ZHANG. PHASE FIELD SIMULATION ON MICROSTRUCTURE EVOLUTION AND GROWTH KINETICS OF Cu6Sn5 INTERMETALLIC COMPOUND DURING EARLY INTERFACIAL REACTION IN Sn/Cu SOLDERING SYSTEM[J]. Acta Metall Sin, 2014, 50(3): 294-304.

全文: PDF(10923 KB)   HTML
摘要: 

运用多相场模型模拟了Sn/Cu互连体系中晶界扩散系数 D G B 及界面初生金属间化合物(IMC)相( η相)与液相Sn(L相)间界面能 σ ηL 对界面Cu6Sn5组织演化和生长动力学行为的影响. 研究表明, 界面IMC层Cu6Sn5晶粒以紧密排列的扇贝状形貌存在, 其扇贝状形貌同时受 D G B σ ηL 的竞争性影响. IMC的生长过程由3阶段组成: Cu6Sn5晶粒快速生长铺满Cu基底阶段、Cu6Sn5晶粒转变为扇贝状形貌的过渡阶段以及Cu6Sn5层增厚和晶粒粗化同时进行的正常生长阶段. IMC层厚度随 D G B 增大而增加, 随 σ ηL 增大而减小; 而Cu6Sn5晶粒的平均横向粒径随 D G B 增大而减小, 随 σ ηL 增大而增加. 界面Cu6Sn5层厚度和晶粒横向粒径随反应时间呈指数规律变化, 采用较大 D G B 和晶界能 σ G B = 2 σ ηL 获得的生长指数符合理想的固/液界面反应的生长过程.

关键词 金属间化合物生长动力学组织演化界面反应相场模拟    
Abstract

In the continuous pursuit of miniaturization, multifunction and high-reliability of electronic products and devices, the packing density has been increasing and the dimension of solder joints has been scaling down. In electronic packaging, during the soldering process being employed to Sn-based solders, an intermetallic compound (IMC) layer is formed between molten solder and pad (or under bump metallization, UBM), whose morphology and thickness as well as growth kinetics play an important role in controlling the service performance of the solder joints, in particular for solder interconnects with the decreasing size where the interfacial IMC layer takes up a high volume fraction in the solder joint. Thus, characterizing the morphology change and growth kinetics of interfacial IMC layer is very important to optimize the soldering process and evaluate the reliability of solder interconnects. In this study, a multi-phase-field model is applied to intensively account for the effect of grain boundary diffusion coefficient ( D G B ) and IMC/liquid interfacial energy σ ηL on the morphology evolution and and growth kinetics of IMC. The simulation results show that Cu6Sn5 grains grow up and contact with each other exhibiting a scallop-like morphology which can be influenced by both the grain boundary diffusion coefficient and IMC/liquid interfacial energy. The IMC growth process exhibits three stages, including the initial stage associated with Cu6Sn5 grain broadening followed by the transition stage characterized by scallop shape formation and the last normal growth stage dominated by IMC layer thickening and concurrent Cu6Sn5 grain coarsening. It is also found that the IMC layer thickness increases with grain boundary diffusion coefficient but decreases with IMC/liquid interfacial energy, while the scallop average width decreases with grain boundary diffusion coefficient and increases with IMC/liquid interfacial energy. The relationships between IMC layer thickness/width and reaction time can be well fitted by an exponential growth law, in which the large grain boundary diffusion coefficient combined with σ G B = 2 σ ηL (where σ GB is the grain boundary energy) can produce precise growth exponent closing to that in the ideal solid-liquid interface reaction.

Key wordsintermetallic compound    growth kinetics    morphological evolution    interfacial reaction    phase field simulation
收稿日期: 2013-07-16     
ZTFLH:  TG113  
基金资助:*国家自然科学基金项目51275178和51205135, 高等学校博士点科研基金项目20110172110003以及中央高校基本科研业务费项目2013ZM0026资助
图1  
表1  模拟所用的材料属性参数
图2  
图3  不同晶界扩散系数(DGB) 下的IMC组织形貌
图4  不同DGB时IMC层厚度和Cu6Sn5扇贝状晶粒的平均横向粒径随时间的变化关系
图5  不同DGB下正常生长阶段IMC厚度与界面反应时间的指数拟合结果
D G B IMC layer thickness Scallop average width
K T n T R2 KW nW R2
2.0×103Dη 35.44 0.35 0.998 23.16 0.32 0.997
2.0×102Dη 28.80 0.37 0.997 25.54 0.27 0.991
Dη 22.52 0.40 0.991 16.27 0.48 0.989
表2  不同DGB下正常生长阶段IMC层厚度和晶粒横向粒径随时间变化的指数拟合结果
图 6.  不同 η / L 界面能下IMC的组织形貌
图7  不同 σ η L 下IMC厚度和Cu6Sn5扇贝状晶粒平均横向粒径随时间的变化关系
σηL/ J/m2 IMC layer thickness Average width of Cu6Sn5 grain
K T n T R2 KW nW R2
0.24 25.76 0.36 0.994 26.32 0.19 0.998
0.15 35.44 0.35 0.998 23.16 0.32 0.997
0.08 36.83 0.42 0.997 27.76 0.23 0.998
表3  不同 σ η L 时正常生长阶段IMC层厚度和晶粒横向粒径与时间的指数拟合结果
[1] Abtew M, Selvaduray G. Mater Sci Eng, 2000; R27: 95
[2] Yin L M, Yang Y, Liu L Q, Zhang X P. Acta Metall Sin, 2009; 45:422
[2] (尹立孟, 杨 艳, 刘亮岐, 张新平. 金属学报, 2009; 45: 422)
[3] Zhou M B, Ma X, Zhang X P. J Mater Sci Mater Electron, 2012; 23: 1543
[4] Zeng K, Tu K N. Mater Sci Eng, 2002; R38: 55
[5] Zuruzi A S, Chiu C H, Lahiri S K, Tu K N. J Appl Phys, 1999; 86: 4916
[6] Deng X, Piotrowski G, Williams J J, Chawla N. J Electron Mater, 2003; 32: 1403
[7] Shen J, Chan Y C, Liu S Y. Acta Mater, 2009; 57: 5196
[8] Ma D, Wang W D, Lahiri S K. J Appl Phys, 2002; 91: 3312
[9] Chen J, Shen J, Lai S Q, Min D, Wang X C. J Alloys Compd, 2010; 489: 631
[10] Li J F, Agyakwa P A, Johnson C M. Acta Mater, 2010; 58: 3429
[11] Kim H K, Liou H K, Tu K N. Appl Phys Lett, 1995; 66: 2337
[12] Gorlich J, Schmitz G, Tu K N. Appl Phys Lett, 2005; 86: 053106-1
[13] Shin C K, Baik Y J, Huh J Y. J Electron Mater, 2001; 30: 1323
[14] Choi S, Lucas J P, Subramanian K N, Bieler T R. J Mater Sci, 2000; 11: 497
[15] Cho M G, Kim H Y, Seo S K, Lee H M. Appl Phys Lett, 2009; 95: 021905-1
[16] Gong J C, Liu C Q, Conway P P, Silberschmidt V V. Acta Mater, 2008; 56: 4291
[17] Chen J K, Beraun J E, Tzou D Y. J Mater Sci, 1999; 34: 6183
[18] Erickson K L, Hopkins P L, Vianco P T. J Electron Mater, 1998; 27: 117
[19] Huh J Y, Hong K K, Kim Y B, Kim K T. J Electron Mater, 2004; 33: 1161
[20] Hong K K, Huh J Y. J Electron Mater, 2006; 35: 56
[21] Park M S, Arroyave R. Acta Mater, 2010; 58: 4900
[22] Kim S G, Kim W T, Suzuki T, Ode M. J Cryst Growth, 2004; 261: 135
[23] Shim J H, Oh C S, Lee B J, Lee D N. Z Metallkd, 1996; 87: 1
[24] Kim S G, Kim W T, Suzuki T. Phys Rev, 1999; 60E: 7186
[25] Xu G S,Zeng J B,Zhou M B,Cao S S,Ma X,Zhang X P. In: Bi K Y, Yang D G, Cai M eds., Proceedings of the 12th International Conference on Electronic Packaging Technology & High Density Packaging, Piscataway, NJ: IEEE Press, 2012: 289
[26] Zhou M B, Ma X, Zhang X P. Acta Metall Sin, 2013; 3: 341
[26] (周敏波, 马 骁, 张新平. 金属学报, 2013; 3 : 341)
[27] Ma X, Wang F J, Qian Y Y, Yoshida F. Mater Lett, 2003; 57: 3361
[28] Yu D Q, Wang L. J Alloys Compd, 2008; 458: 542
[29] Gosh G. J Appl Phys, 2000; 88: 6887
[30] Suh J O, Tu K N, Lutsenko G V, Gusal A M. Acta Mater, 2008; 56: 1075
[31] Gusak A M, Tu K N. Phys Rev, 2002; 66B: 115403-1
[32] Kim S H, Lee H J, Yu Y S, Won Y S. Acta Mater, 2009; 57: 1254
[33] Laudise R A, Carruthers J R, Jackson K A. Annu Rev Mater Sci, 1971; 1: 253
[1] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[2] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[3] 戚晓勇, 柳文波, 何宗倍, 王一帆, 恽迪. UN核燃料烧结致密化过程的相场模拟[J]. 金属学报, 2023, 59(11): 1513-1522.
[4] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[5] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[6] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[7] 宋庆忠, 潜坤, 舒磊, 陈波, 马颖澈, 刘奎. 镍基高温合金K417G与氧化物耐火材料的界面反应[J]. 金属学报, 2022, 58(7): 868-882.
[8] 丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.
[9] 周丽君, 位松, 郭敬东, 孙方远, 王新伟, 唐大伟. 基于飞秒激光时域热反射法的微尺度Cu-Sn金属间化合物热导率研究[J]. 金属学报, 2022, 58(12): 1645-1654.
[10] 王超, 张旭, 王玉敏, 杨青, 杨丽娜, 张国兴, 吴颖, 孔旭, 杨锐. SiCf/Ti65复合材料界面反应与基体相变机理[J]. 金属学报, 2020, 56(9): 1275-1285.
[11] 孙正阳, 王昱天, 柳文波. 气孔与晶界相互作用的相场模拟[J]. 金属学报, 2020, 56(12): 1643-1653.
[12] 张志杰, 黄明亮. 原位研究Cu/Sn-37Pb/Cu微焊点液-固电迁移行为[J]. 金属学报, 2020, 56(10): 1386-1392.
[13] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.
[14] 吉华,邓运来,徐红勇,郭伟强,邓建峰,范世通. 焊接线能量对5182-O/HC260YD+Z异种材料CMT搭接接头组织与性能的影响[J]. 金属学报, 2019, 55(3): 376-388.
[15] 陈丽群, 邱正琛, 于涛. Ru对NiAl[100](010)刃型位错电子结构的影响[J]. 金属学报, 2019, 55(2): 223-228.