Please wait a minute...
金属学报  2015, Vol. 51 Issue (7): 873-882    DOI: 10.11900/0412.1961.2014.00525
  本期目录 | 过刊浏览 |
Sn/Cu互连体系界面和金属间化合物层Kirkendall空洞演化和生长动力学的晶体相场法模拟*
马文婧,柯常波,周敏波,梁水保,张新平()
PHASE-FIELD CRYSTAL SIMULATION ON EVOLU- TION AND GROWTH KINETICS OF KIRKENDALL VOIDS IN INTERFACE AND INTERMETALLIC COMPOUND LAYER IN Sn/Cu SOLDERING SYSTEM
Wenjing MA,Changbo KE,Minbo ZHOU,Shuibao LIANG,Xinping ZHANG()
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640
引用本文:

马文婧,柯常波,周敏波,梁水保,张新平. Sn/Cu互连体系界面和金属间化合物层Kirkendall空洞演化和生长动力学的晶体相场法模拟*[J]. 金属学报, 2015, 51(7): 873-882.
Wenjing MA, Changbo KE, Minbo ZHOU, Shuibao LIANG, Xinping ZHANG. PHASE-FIELD CRYSTAL SIMULATION ON EVOLU- TION AND GROWTH KINETICS OF KIRKENDALL VOIDS IN INTERFACE AND INTERMETALLIC COMPOUND LAYER IN Sn/Cu SOLDERING SYSTEM[J]. Acta Metall Sin, 2015, 51(7): 873-882.

全文: PDF(8639 KB)   HTML
摘要: 

采用二元合金晶体相场模型模拟研究了Sn/Cu互连体系Cu/Cu3Sn界面及金属间化合物层中Kirkendall空洞形成和形貌演化及长大过程, 对Kirkendall空洞生长的微观机制进行了剖析, 同时还模拟和分析了界面Cu3Sn层厚度和杂质含量对Kirkendall空洞形貌和生长动力学的影响. 研究表明, Kirkendall空洞的生长过程由4个阶段组成: Cu/Cu3Sn界面形成大量原子错配区, 原子错配区迅速成长为空洞, 空洞的长大及随后的空洞合并生长. Kirkendall空洞优先在Cu/Cu3Sn界面处形核, 其尺寸随时效时间的延长而增大, 并在时效后期空洞的生长伴随有空洞的合并. Cu3Sn层厚度增加和杂质含量增多均使得Kirkendall空洞数量和生长指数增加以及尺寸增大, 并且2种情况下空洞数量随时间的变化均呈现先增后减的规律.

关键词 Kirkendall空洞金属间化合物生长动力学组织演化晶体相场法    
Abstract

With the development of electronic products towards further miniaturization, multifunction and high-reliability, the packaging density has been increasing and the dimension of solder joints has been scaling down. In electronic packaging, during the soldering process of Sn/Cu system, an intermetallic compound (IMC) layer is formed at the interface between the molten solder and pad (substrate), the interfacial microstructure plays an important role in the reliability of solder interconnects. Generally, during the reflow soldering and subsequent aging process, a large number of Kirkendall voids may form at the Cu/Cu3Sn interface and in the Cu3Sn layer. The existence of Kirkendall voids may increase the potential for brittle interfacial fracture of solder interconnects and reduce the thermal conductivity. Thus, characterization of formation and growth of Kirkendall voids is very important for the evaluation of performance and reliability of solder interconnects. In this work, the formation and growth of Kirkendall voids at the Cu/Cu3Sn interface and in the Cu3Sn layer of Sn/Cu solder system have been investigated by means of phase field crystal modeling. The growth mechanism of Kirkendall voids was analyzed. The effects of thickness of Cu3Sn layer and impurity particles in the Cu3Sn layer on the growth of Kirkendall voids were discussed. Phase field simulation results show that the growth of Kirkendall voids exhibits four stages during the thermal aging, including the formation of atomic mismatch areas at the Cu/Cu3Sn interface, the rapid growth of the atomic mismatch areas leading to the formation of Kirkendall voids, the growth of Kirkendall voids and the subsequent coalescence of Kirkendall voids. Kirkendall voids nucleate preferentially at the Cu/Cu3Sn interface and their sizes increase with the aging time, and the coalescence of the voids can be observed obviously in the later stage of thermal aging. It has also been shown that the increase of the Cu3Sn layer thickness and the amount of impurity particles lead to an increase in both number and size of Kirkendall voids, as well as an increased growth exponent; and the number of Kirkendall voids increases initially and then decreases with the aging time.

Key wordsKirkendall voids    intermetallic compound    growth kinetics    morphological evolution    phase-field crystal method
    
基金资助:* 国家自然科学基金项目51275178 和51205135及高校博士点基金项目20110172110003 和 20130172120055资助
图1  模拟计算采用的二维区域示意图
Symbol Value Symbol Value
B 0 l 0.7 t 1 0.6
B 2 l -1.8 v 1.0
B x 1 K 4.0
n ? l -0.2571 w 1.0
ψ C u 0.2 u 4.0
ψ S n -0.2 n ? s -0.1503
表1  Sn/Cu互连体系模拟所采用的材料属性参数[22]
图2  Cu/Cu3Sn界面和Cu3Sn层Kirkendall空洞的模拟结果和组织形貌
图3  Cu/Cu3Sn界面和Cu3Sn层Kirkendall空洞在不同原子迁移率时的组织形貌
图4  不同Cu3Sn层厚度下Cu/Cu3Sn界面Kirkendall空洞组织形貌
图5  不同Cu3Sn层厚度时Cu/Cu3Sn界面Kirkendall空洞数量随时间的变化关系
图6  不同Cu3Sn层厚度时Cu/Cu3Sn 界面Kirkendall空洞尺寸随时间变化关系
Thickness ratio Kt nY RY2
Cu3Sn∶Cu=1∶1 1.679 1.126 0.983
Cu3Sn∶Cu=9∶10 2.689 0.535 0.980
Cu3Sn∶Cu=4∶5 6.152 0.312 0.994
表2  不同Cu3Sn层厚度情况下Cu/Cu3Sn 界面Kirkendall空洞尺寸随时间变化指数拟合结果
图7  模拟计算采用的二维区域示意图
图8  不同杂质含量时Cu/Cu3Sn界面Kirkendall空洞的组织形貌
图9  不同杂质含量情况下Kirkendall空洞数量随时效时间的变化关系
图10  不同杂质含量情况下Kirkendall空洞尺寸与时效时间的变化关系
Impurity concentration Kt nY RY2
12.98% 0.0270 0.385 0.989
22.26% 0.2050 0.556 0.990
35.56% 0.5362 0.899 0.992
表3  不同杂质含量下Kirkendall空洞尺寸随时间变化的指数拟合结果
[1] Zeng K, Tu K N. Mater Sci Eng, 2002; R38: 55
[2] Ke C B, Zhou M B, Zhang X P. Acta Metall Sin, 2014; 50: 294 (柯常波, 周敏波, 张新平. 金属学报, 2014; 50: 294)
[3] Zhou M B, Ma X, Zhang X P. Acta Metall Sin, 2013; 49: 341 (周敏波, 马 骁, 张新平. 金属学报, 2013: 49: 341)
[4] Frear D R. JOM, 1996; 48: 49
[5] Shang J K, Yao D. J Electron Packag, 1996; 118: 170
[6] Abtew M, Selvaduray G. Mater Sci Eng, 2000; R27: 95
[7] Liang S B,Ke C B,Ma W J,Zhou M B,Zhang X P. In: Bi K Y ed., Proceedings of the 15th International Conference on Electronic Packaging Technology, Piscataway, NJ: IEEE Press, 2014: 641
[8] Besser P R, Madden M C, Flinn P A. J Appl Phys, 1992; 72: 3792
[9] Ahat S, Sheng M, Luo L. J Electron Mater, 2001; 30: 1317
[10] Lin X Q, Luo L. J Electron Mater, 2008; 37: 307
[11] Zeng K J, Stierman R, Chiu T C, Edwards D. J Appl Phys, 2005; 97: 024508-1
[12] Wang Y W, Lin Y W, Kao C R. J Alloys Compd, 2010; 493: 233
[13] Liu Y, Wang J, Yin L, Kondos P, Parks C, Borgesen P, Henderson D W, Cotts E J, Dimitrov N. J Appl Electrochem, 2008; 38: 1695
[14] Wafula F, Liu Y, Yin L, Bliznakov S, Borgesen P. J Electrochem Soc, 2010; 157: 111
[15] Wafula F, Liu Y, Yin L, Borgesen P. J Appl Electrochem, 2011; 41: 469
[16] Yin L, Borgesen P. J Mater Res, 2011; 26: 455
[17] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C. Z Kristallogr, 2005; 220: 567
[18] Fischer T H, Almlof J. J Phys Chem, 1992; 96: 9768
[19] Perdew J P, Burke K, Ernzerhof M. Phys Rev Lett, 1996; 77: 3865
[20] Vanderbilt D. Phys Rev, 1990; 41B: 7892
[21] Elder K R, Provatas N, Berry J, Stefanovic P, Grant M. Phys Rev, 2007; 75B: 064107-1
[22] Elder K R, Huang Z F, Provatas N. Phys Rev, 2010; 81E: 011602-1
[23] Elder K R, Thornton K, Hoyt J J. Philos Mag, 2011; 91: 151
[24] Berry J, Elder K R, Grant M. Phys Rev, 2008; 77B: 224114
[25] Mellenthin J, Karma A, Plapp M. Phys Rev, 2008; 78B: 184110
[26] Liu C Y, Ke L, Chuang Y C, Wang S J. J Appl Phys, 2006; 100: 083702
[27] Lee C H, Park C O. Jpn J Appl Phys, 2003; 42: 4484
[28] Kim J Y, Yu J. Appl Phys Lett, 2008; 92: 092109-1
[29] Weinberg K, B?hme T, Müller W H. Comput Mater Sci, 2009; 45: 827
[30] Yu J, Kim J Y. Acta Mater, 2008; 56: 5514
[31] Kim B J,Lim G T,Kim J,Lee K,Park Y B,Joo Y C. In: Wipiejewski T ed., Proceedings of the 58th Electronic Components and Technology Conference, Piscataway, NJ: IEEE Press, 2008: 336
[32] Christian J W. The Theory of Transformations in Metals and Alloys. London: Pergamon Press Oxford, 1965: 471
[1] 丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.
[2] 周丽君, 位松, 郭敬东, 孙方远, 王新伟, 唐大伟. 基于飞秒激光时域热反射法的微尺度Cu-Sn金属间化合物热导率研究[J]. 金属学报, 2022, 58(12): 1645-1654.
[3] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.
[4] 吉华,邓运来,徐红勇,郭伟强,邓建峰,范世通. 焊接线能量对5182-O/HC260YD+Z异种材料CMT搭接接头组织与性能的影响[J]. 金属学报, 2019, 55(3): 376-388.
[5] 陈丽群, 邱正琛, 于涛. Ru对NiAl[100](010)刃型位错电子结构的影响[J]. 金属学报, 2019, 55(2): 223-228.
[6] 曹丽华, 陈胤伯, 史起源, 远杰, 刘志权. 合金元素对中温Sn-Ag-Cu焊料互连组织及剪切强度的影响[J]. 金属学报, 2019, 55(12): 1606-1614.
[7] 何贤美, 童六牛, 高成, 王毅超. Nd含量对磁控溅射Si(111)/Cr/Nd-Co/Cr薄膜结构与磁性的影响[J]. 金属学报, 2019, 55(10): 1349-1358.
[8] 张敏, 慕二龙, 王晓伟, 韩挺, 罗海龙. TA1/Cu/X65复合板焊接接头微观组织及力学性能[J]. 金属学报, 2018, 54(7): 1068-1076.
[9] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[10] 马宗义, 商乔, 倪丁瑞, 肖伯律. 镁合金搅拌摩擦焊接的研究现状与展望[J]. 金属学报, 2018, 54(11): 1597-1617.
[11] 耿林, 吴昊, 崔喜平, 范国华. 基于箔材反应退火合成的TiAl基复合材料板材研究进展[J]. 金属学报, 2018, 54(11): 1625-1636.
[12] 于宣, 张志豪, 谢建新. 不同Ce含量Fe-6.5%Si合金的组织、有序结构和中温拉伸塑性[J]. 金属学报, 2017, 53(8): 927-936.
[13] 赵宁,邓建峰,钟毅,殷录桥. 热迁移下Ni/Sn-xCu/Ni微焊点钎焊界面金属间化合物的演变[J]. 金属学报, 2017, 53(7): 861-868.
[14] 张志杰,黄明亮. Cu/Sn-52In/Cu微焊点液-固电迁移行为研究[J]. 金属学报, 2017, 53(5): 592-600.
[15] 王大伟,修世超. 焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响[J]. 金属学报, 2017, 53(5): 567-574.